Calibration and numerical simulation of Nanoparticle Surface Area Monitor (TSI Model 3550 NSAM)

Author(s):  
W. G. Shin ◽  
D. Y. H. Pui ◽  
H. Fissan ◽  
S. Neumann ◽  
A. Trampe
2006 ◽  
Vol 9 (1) ◽  
pp. 61-69 ◽  
Author(s):  
W. G> Shin ◽  
D. Y. H. Pui ◽  
H. Fissan ◽  
S. Neumann ◽  
A. Trampe

Gefahrstoffe ◽  
2020 ◽  
Vol 80 (01-02) ◽  
pp. 25-32
Author(s):  
C. Asbach ◽  
T. A. J. Kuhlbusch ◽  
U. Quass ◽  
H. Kaminski

Seit Anfang 2009 werden an einer städtischen Hintergrundmessstation in Mülheim-Styrum im westlichen Ruhrgebiet Anzahlkonzentration, Anzahlgrößenverteilung und lungendeponierbare Oberflächenkonzentration submikroner und ultrafeiner Partikel gemessen. Die dazu eingesetzten Messgeräte Scanning Mobility Particle Sizer (SMPS) und Nanoparticle Surface Area Monitor (NSAM) erwiesen sich als gut geeignet für derartige Messaufgaben. Insbesondere das NSAM ist sehr robust und zuverlässig und wird daher neben der Bestimmung der lungendeponierbaren Oberflächenkonzentration auch zur Funktionsüberwachung des SMPS verwendet. Die ultrafeinen Partikel an der Messstation stammen zu einem großen Teil von einer nahegelegenen Autobahn sowie diversen anderen Quellen in der näheren Umgebung. Der etwa 20 km südlich gelegene Flughafen Düsseldorf scheint keinen merklichen Einfluss zu haben. Eine Auswertung der Wochengänge zeigte überraschenderweise, dass in allen Jahren samstagnachts die im Wochenverlauf höchste Anzahlkonzentration von Partikeln >100 nm gemessen wurde. Während an allen anderen Wochentagen die mittleren Konzentrationen seit 2009 kontinuierlich gesunken sind, blieb die Höhe des Maximums in der Nacht von Samstag auf Sonntag nahezu konstant, was auf eine unveränderte, zeitlich sehr begrenzte Quelle hindeutet.


2010 ◽  
Vol 64 (3) ◽  
pp. 191-194 ◽  
Author(s):  
Niels van Vegten ◽  
Peter Haider ◽  
Marek Maciejewski ◽  
Frank Krumeich ◽  
Alfons Baiker

2020 ◽  
Vol 59 (05) ◽  
pp. 1
Author(s):  
Xuechu Zhao ◽  
Liran Ma ◽  
Yu Zhang ◽  
Xuefeng Xu ◽  
Jianbin Luo

2006 ◽  
Vol 9 (1) ◽  
pp. 53-59 ◽  
Author(s):  
H. Fissan ◽  
S. Neumann ◽  
A. Trampe ◽  
D. Y. H. Pui ◽  
W. G. Shin

The Analyst ◽  
2015 ◽  
Vol 140 (8) ◽  
pp. 2618-2622 ◽  
Author(s):  
Yuana Elly Agustin ◽  
Shen-Long Tsai

Harnessing the high affinity and specificity of biomolecules for high-throughput and selective measurement of the nanoparticle surface area in solutions.


Author(s):  
Niro Nagai ◽  
Shigenobu Miyamoto ◽  
Toru Tsuda ◽  
Shinya Yamahata

The authors have been proposed and developed snow-melting system using geothermal and solar energy. In summer, solar heat is stored into underground from road surface to underground piles. In winter, the underground heat is utilized to melt snow on the road surface. This system was applied to parking lots and bridges of relatively small scale (less than 1000 m2). Numerical simulation program was also developed to predict temperature field of the system and to evaluate system performance. This program was verified by experimental data only for relatively small scale test area. In addition, appropriate design conditions, such as pile diameter, length and number, can not be easily estimated when road surface area and ability (average heat flux) of snow-melting are given. This paper aims to demonstrate the system for relatively large scale (larger than 1000 m2), and to obtain optimal design conditions of the system at given road surface area and ability. The snow-melting system using geothermal and solar energy was applied to a parking lot and a bridge of large scale. Both sites were under practical use which means cars were sometimes parked and run over the bridge. Obtained experimental data of temperature field of the system and snow melting situation show that numerical simulation program predicted system performance and temperature field adequately even though the program contains several simplifications. To discuss the optimal design conditions, numerical simulation was conducted by changing the following parameters: diameter, length, number and pitch of piles, pitch and diameter of heat dissipation pipe, flow rate of circulating water, road surface area. All these parameters are considered to affect system performance. The simulation results revealed that pile surface area determined by diameter, length and number of piles is the dominant parameter for deciding snow-melting ability. Namely, when road surface and snow-melting ability are given, necessary pile surface area can be obtained from the simulation results, and system design of piles becomes possible with considering cost for embedding piles.


Sign in / Sign up

Export Citation Format

Share Document