metal oxide nanoparticle
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 43)

H-INDEX

30
(FIVE YEARS 5)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 189
Author(s):  
Thamer Adnan Abdullah ◽  
Tatjána Juzsakova ◽  
Rashed Taleb Rasheed ◽  
Muhammad Ali Mallah ◽  
Ali Dawood Salman ◽  
...  

In this paper, the application of multiwalled carbon nanotubes (MWCNTs) based on metal oxide nanocomposites as adsorbents for the removal of hydrocarbons such as kerosene from water was investigated. Functionalized MWCNTs were obtained by chemical oxidation using concentrated sulfuric and nitric acids. V2O5, CeO2, and V2O5:CeO2 nanocomposites were prepared using the hydrothermal method followed by deposition of these oxides over MWCNTs. Individual and mixed metal oxides, fresh MWCNTs, and metal oxide nanoparticle-doped MWCNTs using different analysis techniques were characterized. XRD, TEM, SEM, EDX, AFM, Raman, TG/DTA, and BET techniques were used to determine the structure as well as chemical and morphological properties of the newly prepared adsorbents. Fresh MWCNTs, Ce/MWCNTs, V/MWCNTs, and V:Ce/MWCNTs were applied for the removal of kerosene from a model solution of water. GC analysis indicated that high kerosene removal efficiency (85%) and adsorption capacity (4270 mg/g) after 60 min of treatment were obtained over V:Ce/MWCNTs in comparison with fresh MWCNTs, Ce/MWCNTs and V/MWCNTs. The kinetic data were analyzed using the pseudo-first order, pseudo-second order, and intra-particle diffusion rate equations.


Author(s):  
M. M. Thwala ◽  
A. Afantitis ◽  
A. G. Papadiamantis ◽  
A. Tsoumanis ◽  
G. Melagraki ◽  
...  

AbstractEngineered nanoparticles (NPs) are being studied for their potential to harm humans and the environment. Biological activity, toxicity, physicochemical properties, fate, and transport of NPs must all be evaluated and/or predicted. In this work, we explored the influence of metal oxide nanoparticle facets on their toxicity towards bronchial epithelial (BEAS-2B), Murine myeloid (RAW 264.7), and E. coli cell lines. To estimate the toxicity of metal oxide nanoparticles grown to a low facet index, a quantitative structure–activity relationship ((Q)SAR) approach was used. The novel model employs theoretical (density functional theory calculations) and experimental studies (transmission electron microscopy images from which several particle descriptors are extracted and toxicity data extracted from the literature) to investigate the properties of faceted metal oxides, which are then utilized to construct a toxicity model. The classification mode of the k-nearest neighbour algorithm (EnaloskNN, Enalos Chem/Nanoinformatics) was used to create the presented model for metal oxide cytotoxicity. Four descriptors were identified as significant: core size, chemical potential, enthalpy of formation, and electronegativity count of metal oxides. The relationship between these descriptors and metal oxide facets is discussed to provide insights into the relative toxicities of the nanoparticle. The model and the underpinning dataset are freely available on the NanoSolveIT project cloud platform and the NanoPharos database, respectively.


2021 ◽  
Vol 22 (17) ◽  
pp. 9596
Author(s):  
Harshada Kotrange ◽  
Agnieszka Najda ◽  
Aarti Bains ◽  
Robert Gruszecki ◽  
Prince Chawla ◽  
...  

In addition to the benefits, increasing the constant need for antibiotics has resulted in the development of antibiotic bacterial resistance over time. Antibiotic tolerance mainly evolves in these bacteria through efflux pumps and biofilms. Leading to its modern and profitable uses, emerging nanotechnology is a significant field of research that is considered as the most important scientific breakthrough in recent years. Metal nanoparticles as nanocarriers are currently attracting a lot of interest from scientists, because of their wide range of applications and higher compatibility with bioactive components. As a consequence of their ability to inhibit the growth of bacteria, nanoparticles have been shown to have significant antibacterial, antifungal, antiviral, and antiparasitic efficacy in the battle against antibiotic resistance in microorganisms. As a result, this study covers bacterial tolerance to antibiotics, the antibacterial properties of various metal nanoparticles, their mechanisms, and the use of various metal and metal oxide nanoparticles as novel antibiotic carriers for direct antibiotic delivery.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1882
Author(s):  
Jin Ah Lee ◽  
Won Jun Lee ◽  
Joonwon Lim ◽  
Sang Ouk Kim

Metal oxide nanoparticles supported on heteroatom-doped graphitic surfaces have been pursued for several decades for a wide spectrum of applications. Despite extensive research on functional metal oxide nanoparticle/doped carbon nanomaterial hybrids, the role of the heteroatom dopant in the hybridization process of doped carbon nanomaterials has been overlooked. Here, the direct growth of MnOx and RuOx nanoparticles in nitrogen (N)-doped sites of carbon nanotubes (NCNTs) is presented. The quaternary nitrogen (NQ) sites of CNTs actively participate in the nucleation and growth of the metal nanoparticles. The evenly distributed NQ nucleation sites mediate the generation of uniformly dispersed <10 nm diameter MnOx and RuOx nanoparticles, directly decorated on NCNT surfaces. The electrochemical performance of the resultant hybridized materials was evaluated using cyclic voltammetry. This novel hybridization method using the dopant-mediated nucleation and growth of metal oxides suggests ways that heteroatom dopants can be utilized to optimize the structure, interface and corresponding properties of graphitic carbon-based hybrid materials.


2021 ◽  
Vol 21 (08) ◽  
pp. 415-424
Author(s):  
Esin Gulnaz Canli

Salinity increase in freshwaters affects the physiology and metal uptake in fish, though there is no enough evidence on the influence of salinity on metal-oxide nanoparticle (NPs) toxicity. Therefore, the effects of salinity and NPs (Al2O3, TiO2) were tested in acute (2 days and 10 mg NPs/L) and chronic (20 days and 1 mg NP/L) exposures at different salinities (0 and 10 ppt). Following the exposures, the activities of CAT (catalase), SOD (superoxide dismutase), GPX (glutathione peroxidase), GR (glutathione reductase) and GST (glutathione S-transferase) were determined in the liver of O. niloticus. Data showed that CAT and SOD activities did not change significantly (P>0.05) in acute exposures, though their activities significantly (P<0.05) decreased in chronic exposures at both salinities. Similarly, GPX and GR activities did not respond to acute NP exposures, but their activities decreased significantly in chronic exposures. However, GST showed the opposite response in acute and chronic exposures following NP and salinity exposures. Data showed that chronic exposures were more effective than acute exposures in regard to the response of the enzymes. Data also revealed that salinity did not have a predominant effect on the antioxidant enzymes, and also did not influence NPs toxicity.


Sign in / Sign up

Export Citation Format

Share Document