Is Drought Occurrence And Severity Increasing Due to Climate Change? Analysing Drought Class Transitions With Loglinear Models

Author(s):  
E. E. Moreira ◽  
A. A. Paulo ◽  
L. S. Pereira
Author(s):  
M. Baharlouii ◽  
D. Mafi Gholami ◽  
M. Abbasi

Abstract. Generally, investigation of long-term mangroves fragmentation changes can be used as an important tool in assessing sensitivity and vulnerability of these ecosystems to the multiple environmental hazards. Therefore, the aim of this study was to reveal the trend of mangroves fragmentation changes in Khamir habitat using satellite imagery and Fragstats software during a 30-year period (1986–2016). To this end, Landsat images of 1986, 1998, and 2016 were used and after computing the normalized difference vegetation index (NDVI) to distinguish mangroves from surrounding water and land areas, images were further processed and classified into two types of land cover (i.e., mangrove and non-mangrove areas) using the maximum likelihood classification method. By determining the extent of mangroves in the Khamir habitat in the years of 1986, 1998 and 2017, the trend of fragmentation changes was quantified using CA, NP, PD and LPI landscape metrics. The results showed that the extent of mangroves in Khamir habitat (CA) decreased in the period post-1998 (1998–2016). The results also showed that, the NP and PD increased in the period of post-1998 and in contrast, the LPI decrease in this period. These results revealed the high degree of vulnerability of mangroves in Khamir habitat to the drought occurrence and are thus threatened by climate change. We hope that the results of this study stimulate further climate change adaptation planning efforts and help decision-makers prioritize and implement conservative measures in the mangrove ecosystems on the northern coasts of the PG and the GO and elsewhere.


2021 ◽  
Author(s):  
Kimia Naderi ◽  
mahnoosh moghaddasi ◽  
Ashkan Shokri

Abstract This study aims to investigate the effect of climate change on the probability of drought occurrence in central Iran. To this end, a new drought index called Multivariate Standardized Drought Index (MSDI) was developed, which is composed of the Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Soil Moisture Index (SSI). The required data included precipitation, temperature (from CRU TS), and soil moisture (from the ESA CCA SM product) on a monthly time scale for the 1980–2016 period. Moreover, future climate data were downloaded from CMIP6 models under the latest SSPs-RCPs emission scenarios (SSP1-2.6 and SSP5-8.5) for the 2020–2056 period. Based on the NRMSE, Sn, and NS evaluation criteria, the Galambos and Clayton functions were selected to derive copula-based joint distribution functions in both periods. The results showed that more severe droughts and longer will occur in the future compared to the historical period and in particular under the SSP5-8.5 scenario. From the derived joint return period, a drought event with defined severity or duration will happen in a shorter return period as compared with the historical period. In other words, joint return period indicated a higher probability of drought occurrence in the future period. Moreover, the joint return period analysis revealed that the return period of mild droughts will remain the same, while it decresed over extreme droughts in the future.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document