Ice Initiation for Various Ice Nuclei Types and its Infl uence on Precipitation Formation in Convective Clouds

Author(s):  
Martin Simmel ◽  
Harald Heinrich ◽  
Karoline Diehl
2006 ◽  
Vol 6 (1) ◽  
pp. 67-80 ◽  
Author(s):  
A. Teller ◽  
Z. Levin

Abstract. Numerical experiments were carried out using the Tel-Aviv University 2-D cloud model to investigate the effects of increased concentrations of Cloud Condensation Nuclei (CCN), giant CCN (GCCN) and Ice Nuclei (IN) on the development of precipitation and cloud structure in mixed-phase sub-tropical convective clouds. In order to differentiate between the contribution of the aerosols and the meteorology, all simulations were conducted with the same meteorological conditions. The results show that under the same meteorological conditions, polluted clouds (with high CCN concentrations) produce less precipitation than clean clouds (with low CCN concentrations), the initiation of precipitation is delayed and the lifetimes of the clouds are longer. GCCN enhance the total precipitation on the ground in polluted clouds but they have no noticeable effect on cleaner clouds. The increased rainfall due to GCCN is mainly a result of the increased graupel mass in the cloud, but it only partially offsets the decrease in rainfall due to pollution (increased CCN). The addition of more effective IN, such as mineral dust particles, reduces the total amount of precipitation on the ground. This reduction is more pronounced in clean clouds than in polluted ones. Polluted clouds reach higher altitudes and are wider than clean clouds and both produce wider clouds (anvils) when more IN are introduced. Since under the same vertical sounding the polluted clouds produce less rain, more water vapor is left aloft after the rain stops. In our simulations about 3.5 times more water evaporates after the rain stops from the polluted cloud as compared to the clean cloud. The implication is that much more water vapor is transported from lower levels to the mid troposphere under polluted conditions, something that should be considered in climate models.


2012 ◽  
Vol 12 (1) ◽  
pp. 1687-1732 ◽  
Author(s):  
B. Croft ◽  
J. R. Pierce ◽  
R. V. Martin ◽  
C. Hoose ◽  
U. Lohmann

Abstract. This study examines the influences of assumptions in convective wet scavenging parameterizations on global climate model simulations of aerosol concentrations and wet deposition. To facilitate this study, an explicit representation of the uptake of aerosol mass and number into convective cloud droplets and ice crystals by the processes of activation, collisions, freezing and evaporation is introduced into the ECHAM5-HAM model. This development replaces the prescribed aerosol cloud-droplet-borne/ice-crystal-borne fractions of the standard model. Relative to the standard model, the more consistent treatment between convective aerosol-cloud microphysical processes yields a reduction of aerosol wet removal in mixed liquid and ice phase convective clouds by at least a factor of two, and the global, annual mean aerosol burdens are increased by at least 20%. Two limiting cases regarding the wet scavenging of entrained aerosols are considered. In the first case, aerosols entering convective clouds at their bases are the only aerosols that are scavenged into cloud droplets, and are susceptible to removal by convective precipitation formation. In the second case, aerosols that are entrained into the cloud above the cloud base layer can activate, can collide with existing cloud droplets and ice crystals, and can subsequently be removed by precipitation formation. The limiting case that allows aerosols entrained above cloud base to become cloud-droplet-borne and ice-crystal-borne reduces the annual and global mean aerosol burdens by 30% relative to the other limiting case, and yields the closest agreement with global aerosol optical depth retrievals, and black carbon vertical profiles from aircraft campaigns (changes of about one order of magntiude in the upper troposphere). Predicted convective cloud droplet number concentrations are doubled in the tropical middle troposphere when aerosols entrained above cloud base are allowed to activate. These results show that aerosol concentrations and wet deposition predicted in a global model are strongly sensitive to the assumptions made regarding the wet scavenging of aerosols in convective clouds.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Xiaoli Liu ◽  
Ye Fu ◽  
Zhibin Cao ◽  
Shuanglong Jin

Ice nuclei are very important factors as they significantly affect the development and evolvement of convective clouds such as hail clouds. In this study, numerical simulations of hail processes in the Zhejiang Province were conducted using a mesoscale numerical model (WRF v3.4). The effects of six ice nuclei parameterization schemes on the macroscopic and microscopic structures of hail clouds were compared. The effect of the ice nuclei concentration on ground hailfall is stronger than that on ground rainfall. There were significant spatiotemporal, intensity, and distribution differences in hailfall. Changes in the ice nuclei concentration caused different changes in hydrometeors and directly affected the ice crystals, and, hence, the spatiotemporal distribution of other hydrometeors and the thermodynamic structure of clouds. An increased ice nuclei concentration raises the initial concentration of ice crystals with higher mixing ratio. In the developing and early maturation stages of hail cloud, a larger number of ice crystals competed for water vapor with increasing ice nuclei concentration. This effect prevents ice crystals from maturing into snow particles and inhibits the formation and growth of hail embryos. During later maturation stages, updraft in the cloud intensified and more supercooled water was transported above the 0°C level, benefitting the production and growth of hail particles. An increased ice nuclei concentration therefore favors the formation of hail.


2015 ◽  
Vol 72 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Cynthia H. Twohy

Abstract Mineral dust particles have been shown to act as cloud condensation nuclei, and they are known to interact with developing tropical storms over the Atlantic downwind of the Sahara. Once present within liquid droplets, they have the potential to act as freezing ice nuclei and further affect the microphysics, dynamics, and evolution of tropical storms. However, few measurements of mineral dust particles in tropical convective clouds exist. This study indicates that about one-third of droplets sampled in small convective clouds in the tropical eastern Atlantic contained dust particles, and dust was the dominant residual particle type sampled in ice crystals from anvil outflow. However, estimated number and mass concentrations of dust in anvil ice were small compared to the amount of dust available within the Saharan air layer itself.


Author(s):  
Ramon Campos Braga ◽  
Daniel Rosenfeld ◽  
Ralf Weigel ◽  
Tina Jurkat ◽  
Meinrat O. Andreae ◽  
...  

2010 ◽  
Vol 67 (8) ◽  
pp. 2417-2436 ◽  
Author(s):  
T. Eidhammer ◽  
P. J. DeMott ◽  
A. J. Prenni ◽  
M. D. Petters ◽  
C. H. Twohy ◽  
...  

Abstract The initiation of ice in an isolated orographic wave cloud was compared with expectations based on ice nucleating aerosol concentrations and with predictions from new ice nucleation parameterizations applied in a cloud parcel model. Measurements of ice crystal number concentrations were found to be in good agreement both with measured number concentrations of ice nuclei feeding the clouds and with ice nuclei number concentrations determined from the residual nuclei of cloud particles collected by a counterflow virtual impactor. Using lognormal distributions fitted to measured aerosol size distributions and measured aerosol chemical compositions, ice nuclei and ice crystal concentrations in the wave cloud were reasonably well predicted in a 1D parcel model framework. Two different empirical parameterizations were used in the parcel model: a parameterization based on aerosol chemical type and surface area and a parameterization that links ice nuclei number concentrations to the number concentrations of particles with diameters larger than 0.5 μm. This study shows that aerosol size distribution and composition measurements can be used to constrain ice initiation by primary nucleation in models. The data and model results also suggest the likelihood that the dust particle mode of the aerosol size distribution controls the number concentrations of the heterogeneous ice nuclei, at least for the lower temperatures examined in this case.


Author(s):  
Lauriana C. Gaudet ◽  
Kara J. Sulia ◽  
Tzu-Chin Tsai ◽  
Jen-Ping Chen ◽  
Jessica P. Blair

AbstractMicrophysical processes within mixed-phase convective clouds can have cascading impacts on cloud properties and resultant precipitation. This paper investigates the role of microphysics in the lake-effect storm (LES) observed during intensive observing period 4 of the Ontario Winter Lake-effect Systems field campaign. A microphysical ensemble is composed of 24 simulations that differ in the microphysics scheme used (e.g., Weather Research and Forecasting Model microphysics options or a choice of two bulk adaptive habit models) along with changes in the representation of aerosol and potential ice nuclei concentrations, ice nucleation parameterizations, rain and ice fall speeds, spectral indices, ice habit assumptions, and the number of moments used for modeling ice-phase hydrometeors in each adaptive habit model. Each of these changes to microphysics resulted in varied precipitation types at the surface; 15 members forecast a mixture of snow, ice, and graupel, seven members forecast only snow and ice, and the remaining two members forecast a combination of snow, ice, graupel, and rain. Observations from an optical disdrometer positioned to the south of the LES core indicate that 92% of the observed particles were snow and ice, 5% were graupel, and 3% were rain and drizzle. Analysis of observations spanning more than a point location, such as polarimetric radar observations and aircraft measurements of liquid water content, provides insight into cloud composition and processes leading to the differences at the surface. Ensemble spread is controlled by hydrometeor type differences spurred by processes or parameters (e.g., ice fall speed) that affect graupel mass.


Sign in / Sign up

Export Citation Format

Share Document