Myosin Ii: Sarcomeric Myosins, The Motors Of Contraction In Cardiac And Skeletal Muscles

Author(s):  
Carlo Reggiani ◽  
Roberto Bottinelli
Keyword(s):  
2018 ◽  
Vol 596 (7) ◽  
pp. 1243-1257 ◽  
Author(s):  
Valentina Percario ◽  
Simona Boncompagni ◽  
Feliciano Protasi ◽  
Irene Pertici ◽  
Francesca Pinzauti ◽  
...  

2001 ◽  
Vol 91 (6) ◽  
pp. 2479-2486 ◽  
Author(s):  
Y. Lecarpentier ◽  
D. Chemla ◽  
J. C. Pourny ◽  
F.-X. Blanc ◽  
C. Coirault

Different classes of molecular motors, “rowers” and “porters,” have been proposed to describe the chemomechanical transduction of energy. Rowers work in large assemblies and spend a large percentage of time detached from their lattice substrate. Porters behave in the opposite way. We calculated the number of myosin II cross bridges (CB) and the probabilities of attached and detached states in a minimal four-state model in slow (soleus) and fast (diaphragm) mouse skeletal muscles. In both muscles, we found that the probability of CB being detached was ∼98% and the number of working CB was higher than 109/mm2. We concluded that muscular myosin II motors were classified in the category of rowers. Moreover, attachment time was higher than time stroke and time for ADP release. The duration of the transition from detached to attached states represented the rate-limiting step of the overall attached time. Thus diaphragm and soleus myosins belong to subtype 1 rowers.


Author(s):  
D. A. Fischman ◽  
J. E. Dennis ◽  
T. Obinata ◽  
H. Takano-Ohmuro

C-protein is a 150 kDa protein found within the A bands of all vertebrate cross-striated muscles. By immunoelectron microscopy, it has been demonstrated that C-protein is distributed along a series of 7-9 transverse stripes in the medial, cross-bridge bearing zone of each A band. This zone is now termed the C-zone of the sarcomere. Interest in this protein has been sparked by its striking distribution in the sarcomere: the transverse repeat between C-protein stripes is 43 nm, almost exactly 3 times the 14.3 nm axial repeat of myosin cross-bridges along the thick filaments. The precise packing of C-protein in the thick filament is still unknown. It is the only sarcomeric protein which binds to both myosin and actin, and the actin-binding is Ca-sensitive. In cardiac and slow, but not fast, skeletal muscles C-protein is phosphorylated. Amino acid composition suggests a protein of little or no αhelical content. Variant forms (isoforms) of C-protein have been identified in cardiac, slow and embryonic muscles.


Author(s):  
F.T. Llados ◽  
V. Krlho ◽  
G.D. Pappas

It Is known that Ca++ enters the muscle fiber at the junctional area during the action of the neurotransmitter, acetylcholine (ACh). Pappas and Rose demonstrated that following Intense stimulation, calcium deposits are found In the postsynaptic muscle membrane, Indicating the existence of calcium uptake In the postsynaptic area following ACh release. In addition to this calcium uptake, when mammal Ian skeletal muscles are exposed to a sustained action of the neurotransmitter, muscle damage develops. These same effects, l.e., Increased transmitter release, calcium uptake and finally muscle damage, can be obtained by Incubating the muscle with lonophore A23178.


1993 ◽  
Vol 5 (2) ◽  
pp. 137-146
Author(s):  
Seiichiro INOKUCHI ◽  
Tadanao KIMURA ◽  
Masataka SUZUKI ◽  
Junji ITO ◽  
Hiroo KUMAKURA

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 2482-PUB
Author(s):  
JIDONG LIU ◽  
ZHENG SUN

Diabetes ◽  
1987 ◽  
Vol 36 (7) ◽  
pp. 842-848 ◽  
Author(s):  
K. Kjeldsen ◽  
H. Braendgaard ◽  
P. Sidenius ◽  
J. S. Larsen ◽  
A. Norgaard

Sign in / Sign up

Export Citation Format

Share Document