sarcomeric protein
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 34)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 23 (1) ◽  
pp. 88
Author(s):  
Kasturi Markandran ◽  
Haiyang Yu ◽  
Weihua Song ◽  
Do Thuy Uyen Ha Lam ◽  
Mufeeda Madathummal ◽  
...  

Heart failure (HF) as a result of myocardial infarction (MI) is a major cause of fatality worldwide. However, the cause of cardiac dysfunction succeeding MI has not been elucidated at a sarcomeric level. Thus, studying the alterations within the sarcomere is necessary to gain insights on the fundamental mechansims leading to HF and potentially uncover appropriate therapeutic targets. Since existing research portrays regulatory light chains (RLC) to be mediators of cardiac muscle contraction in both human and animal models, its role was further explored In this study, a detailed characterisation of the physiological changes (i.e., isometric force, calcium sensitivity and sarcomeric protein phosphorylation) was assessed in an MI mouse model, between 2D (2 days) and 28D post-MI, and the changes were related to the phosphorylation status of RLCs. MI mouse models were created via complete ligation of left anterior descending (LAD) coronary artery. Left ventricular (LV) papillary muscles were isolated and permeabilised for isometric force and Ca2+ sensitivity measurement, while the LV myocardium was used to assay sarcomeric proteins’ (RLC, troponin I (TnI) and myosin binding protein-C (MyBP-C)) phosphorylation levels and enzyme (myosin light chain kinase (MLCK), zipper interacting protein kinase (ZIPK) and myosin phosphatase target subunit 2 (MYPT2)) expression levels. Finally, the potential for improving the contractility of diseased cardiac papillary fibres via the enhancement of RLC phosphorylation levels was investigated by employing RLC exchange methods, in vitro. RLC phosphorylation and isometric force potentiation were enhanced in the compensatory phase and decreased in the decompensatory phase of HF failure progression, respectively. There was no significant time-lag between the changes in RLC phosphorylation and isometric force during HF progression, suggesting that changes in RLC phosphorylation immediately affect force generation. Additionally, the in vitro increase in RLC phosphorylation levels in 14D post-MI muscle segments (decompensatory stage) enhanced its force of isometric contraction, substantiating its potential in HF treatment. Longitudinal observation unveils potential mechanisms involving MyBP-C and key enzymes regulating RLC phosphorylation, such as MLCK and MYPT2 (subunit of MLCP), during HF progression. This study primarily demonstrates that RLC phosphorylation is a key sarcomeric protein modification modulating cardiac function. This substantiates the possibility of using RLCs and their associated enzymes to treat HF.


2021 ◽  
pp. jmedgenet-2021-107866
Author(s):  
Pratul Kumar Jain ◽  
Shashank Jayappa ◽  
Thiagarajan Sairam ◽  
Anupam Mittal ◽  
Sayan Paul ◽  
...  

BackgroundHypertrophic cardiomyopathy (HCM) is a genetic heart muscle disease with preserved or increased ejection fraction in the absence of secondary causes. Mutations in the sarcomeric protein-encoding genes predominantly cause HCM. However, relatively little is known about the genetic impact of signalling proteins on HCM.Methods and resultsHere, using exome and targeted sequencing methods, we analysed two independent cohorts comprising 401 Indian patients with HCM and 3521 Indian controls. We identified novel variants in ribosomal protein S6 kinase beta-1 (RPS6KB1 or S6K1) gene in two unrelated Indian families as a potential candidate gene for HCM. The two unrelated HCM families had the same heterozygous missense S6K1 variant (p.G47W). In a replication association study, we identified two S6K1 heterozygotes variants (p.Q49K and p.Y62H) in the UK Biobank cardiomyopathy cohort (n=190) compared with matched controls (n=16 479). These variants are neither detected in region-specific controls nor in the human population genome data. Additionally, we observed an S6K1 variant (p.P445S) in an Arab patient with HCM. Functional consequences were evaluated using representative S6K1 mutated proteins compared with wild type in cellular models. The mutated proteins activated the S6K1 and hyperphosphorylated the rpS6 and ERK1/2 signalling cascades, suggesting a gain-of-function effect.ConclusionsOur study demonstrates for the first time that the variants in the S6K1 gene are associated with HCM, and early detection of the S6K1 variant carriers can help to identify family members at risk and subsequent preventive measures. Further screening in patients with HCM with different ethnic populations will establish the specificity and frequency of S6K1 gene variants.


2021 ◽  
Vol 134 (18) ◽  
Author(s):  
Ariane Biquand ◽  
Simone Spinozzi ◽  
Paola Tonino ◽  
Jérémie Cosette ◽  
Joshua Strom ◽  
...  

ABSTRACT Titin is a giant sarcomeric protein that is involved in a large number of functions, with a primary role in skeletal and cardiac sarcomere organization and stiffness. The titin gene (TTN) is subject to various alternative splicing events, but in the region that is present at the M-line, the only exon that can be spliced out is Mex5, which encodes for the insertion sequence 7 (is7). Interestingly, in the heart, the majority of titin isoforms are Mex5+, suggesting a cardiac role for is7. Here, we performed comprehensive functional, histological, transcriptomic, microscopic and molecular analyses of a mouse model lacking the Ttn Mex5 exon (ΔMex5), and revealed that the absence of the is7 is causative for dilated cardiomyopathy. ΔMex5 mice showed altered cardiac function accompanied by increased fibrosis and ultrastructural alterations. Abnormal expression of excitation–contraction coupling proteins was also observed. The results reported here confirm the importance of the C-terminal region of titin in cardiac function and are the first to suggest a possible relationship between the is7 and excitation–contraction coupling. Finally, these findings give important insights for the identification of new targets in the treatment of titinopathies.


2021 ◽  
pp. 1-2
Author(s):  
Sedigheh Saedi ◽  
Pooneh Pashapour ◽  
Golnaz Houshmand

Abstract Ebstein malformation of tricuspid valve is a congenital disease of tricuspid valve with associated right ventricular cardiomyopathy. Hypertrophic cardiomyopathy is a form of inherited left ventricular cardiomyopathy caused by sarcomeric protein gene mutations with inherent risks of sudden cardiac death. Here we report a rare case with co-occurrence of Ebstein malformation of tricuspid valve and hypertrophic cardiomyopathy in a young patient.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Nora Yucel ◽  
Quentin McAfee ◽  
Maria G Paterlini ◽  
Zoltan Arany

We hypothesized that the 3CL protease (3CLPro) is responsible for the sarcomere degradation observed in cardiomyocytes infected by SARS-COV2. Overexpression of 3CLPro, but not a catalytically inactive mutant, resulted in breakdown of sarcomeres characterized by intact Z-disk/thin filament subunits that has been recently reported (Perez-Bermejo, et al, 2021) in SARS-COV2 infection. To identify potential host protein targets of 3CLPro in an unbiased fashion we screened the human proteome using a cut-site scoring algorithm that we developed. Scoring, ie likelihood of 3CL protease cleavage, was based off experimental data (Chuck et al, 2010) previously published on the highly homologous (96%) 3CL protease from SARS-COV. This scoring was followed by refinement by secondary structure prediction to identify cut-sites that lie in unstructured regions that are thus thus more likely to be accessible to the protease. Using this method, we identified >1000 potential high-likelihood cut sites across the proteome. Further filtering by proteins with cardiomyocyte expression showed 5 high-likelihood sites within the giant sarcomeric protein, Obscurin (OBSCN), as well as many other structural and signaling proteins which we experimentally validated. Expression of 3CLPro in IPSC cardiomyocytes resulted in significantly reduced OBSCN staining without alterations in Z-disk, thin filament, or thick filament proteins by both western blot and immunocytochemistry. In addition, imaging showed loss of OBSCN at sites with intact Z-disk/thin filament subunits. Thus we propose that activity of 3CLPro is a significant contributor to sarcomere breakdown in SARS-COV2 infection via degradation of Obscurin.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gabrielle Norrish ◽  
Ella Field ◽  
Juan P. Kaski

Hypertrophic cardiomyopathy is the second most common cause of cardiomyopathy presenting during childhood and whilst its underlying aetiology is variable, the majority of disease is caused by sarcomeric protein gene variants. Sarcomeric disease can present at any age with highly variable disease phenotype, progression and outcomes. The majority have good childhood-outcomes with reported 5-year survival rates above 80%. However, childhood onset disease is associated with considerable life-long morbidity and mortality, including a higher SCD rate during childhood than seen in adults. Management is currently focused on relieving symptoms and preventing disease-related complications, but the possibility of future disease-modifying therapies offers an exciting opportunity to modulate disease expression and outcomes in these young patients.


2021 ◽  
Vol 153 (7) ◽  
Author(s):  
Yoel H. Sitbon ◽  
Francisca Diaz ◽  
Katarzyna Kazmierczak ◽  
Jingsheng Liang ◽  
Medhi Wangpaichitr ◽  
...  

In this study, we assessed the super relaxed (SRX) state of myosin and sarcomeric protein phosphorylation in two pathological models of cardiomyopathy and in a near-physiological model of cardiac hypertrophy. The cardiomyopathy models differ in disease progression and severity and express the hypertrophic (HCM-A57G) or restrictive (RCM-E143K) mutations in the human ventricular myosin essential light chain (ELC), which is encoded by the MYL3 gene. Their effects were compared with near-physiological heart remodeling, represented by the N-terminally truncated ELC (Δ43 ELC mice), and with nonmutated human ventricular WT-ELC mice. The HCM-A57G and RCM-E143K mutations had antagonistic effects on the ATP-dependent myosin energetic states, with HCM-A57G cross-bridges fostering the disordered relaxed (DRX) state and the RCM-E143K model favoring the energy-conserving SRX state. The HCM-A57G model promoted the switch from the SRX to DRX state and showed an ∼40% increase in myosin regulatory light chain (RLC) phosphorylation compared with the RLC of normal WT-ELC myocardium. On the contrary, the RCM-E143K–associated stabilization of the SRX state was accompanied by an approximately twofold lower level of myosin RLC phosphorylation compared with the RLC of WT-ELC. Upregulation of RLC phosphorylation was also observed in Δ43 versus WT-ELC hearts, and the Δ43 myosin favored the energy-saving SRX conformation. The two disease variants also differently affected the duration of force transients, with shorter (HCM-A57G) or longer (RCM-E143K) transients measured in electrically stimulated papillary muscles from these pathological models, while no changes were displayed by Δ43 fibers. We propose that the N terminus of ELC (N-ELC), which is missing in the hearts of Δ43 mice, works as an energetic switch promoting the SRX-to-DRX transition and contributing to the regulation of myosin RLC phosphorylation in full-length ELC mice by facilitating or sterically blocking RLC phosphorylation in HCM-A57G and RCM-E143K hearts, respectively.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas G. Martin ◽  
Valerie D. Myers ◽  
Praveen Dubey ◽  
Shubham Dubey ◽  
Edith Perez ◽  
...  

AbstractThe association between reduced myofilament force-generating capacity (Fmax) and heart failure (HF) is clear, however the underlying molecular mechanisms are poorly understood. Here, we show impaired Fmax arises from reduced BAG3-mediated sarcomere turnover. Myofilament BAG3 expression decreases in human HF and positively correlates with Fmax. We confirm this relationship using BAG3 haploinsufficient mice, which display reduced Fmax and increased myofilament ubiquitination, suggesting impaired protein turnover. We show cardiac BAG3 operates via chaperone-assisted selective autophagy (CASA), conserved from skeletal muscle, and confirm sarcomeric CASA complex localization is BAG3/proteotoxic stress-dependent. Using mass spectrometry, we characterize the myofilament CASA interactome in the human heart and identify eight clients of BAG3-mediated turnover. To determine if increasing BAG3 expression in HF can restore sarcomere proteostasis/Fmax, HF mice were treated with rAAV9-BAG3. Gene therapy fully rescued Fmax and CASA protein turnover after four weeks. Our findings indicate BAG3-mediated sarcomere turnover is fundamental for myofilament functional maintenance.


2021 ◽  
Vol 22 (6) ◽  
pp. 3288
Author(s):  
Stephanie L. Padula ◽  
Nivedhitha Velayutham ◽  
Katherine E. Yutzey

During the postnatal period, mammalian cardiomyocytes undergo numerous maturational changes associated with increased cardiac function and output, including hypertrophic growth, cell cycle exit, sarcomeric protein isoform switching, and mitochondrial maturation. These changes come at the expense of loss of regenerative capacity of the heart, contributing to heart failure after cardiac injury in adults. While most studies focus on the transcriptional regulation of embryonic or adult cardiomyocytes, the transcriptional changes that occur during the postnatal period are relatively unknown. In this review, we focus on the transcriptional regulators responsible for these aspects of cardiomyocyte maturation during the postnatal period in mammals. By specifically highlighting this transitional period, we draw attention to critical processes in cardiomyocyte maturation with potential therapeutic implications in cardiovascular disease.


Sign in / Sign up

Export Citation Format

Share Document