Response of a Discontinuously Nonlinear Rotor System

1992 ◽  
pp. 182-189 ◽  
Author(s):  
D. Gonsalves ◽  
R. D. Neilson ◽  
A. D. S. Barr
Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo

Abstract This paper investigates stable and unstable period-1 motions in a rotor system through the discrete mapping method. The discrete mapping of a nonlinear rotor system is for stable and unstable period-1 motions. The stability and bifurcation of periodic motions are determined. Numerical simulations of periodic motions are completed and phase trajectories, displacement orbits and velocity plane are illustrated. The period-1 motion near the internal resonance is determined with large vibration in the nonlinear rotor system.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Tsuyoshi Inoue ◽  
Jun Liu ◽  
Yukio Ishida ◽  
Yusuke Yoshimura

In rotating machinery, rotor unbalance causes many resonances at critical speeds corresponding to different modes. In this paper, a vibration control method for rotor systems utilizing disturbance observer is proposed. The nonlinear terms, unbalance, parameter variations, and uncertain terms of a rotor system are lumped into a disturbance term, and this term is canceled by using disturbance observer. As a result, the vibrations are suppressed to small amplitudes all over the rotational speed range. Simultaneously, unbalance of the first mode is estimated from the information of control force of disturbance observer. Moreover, the effects of parameter errors of the control system are also investigated. The validity of the proposed method is verified through numerical simulations and experiments.


Sign in / Sign up

Export Citation Format

Share Document