nonlinear rotor system
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 3)

Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo

Abstract This paper investigates stable and unstable period-1 motions in a rotor system through the discrete mapping method. The discrete mapping of a nonlinear rotor system is for stable and unstable period-1 motions. The stability and bifurcation of periodic motions are determined. Numerical simulations of periodic motions are completed and phase trajectories, displacement orbits and velocity plane are illustrated. The period-1 motion near the internal resonance is determined with large vibration in the nonlinear rotor system.


Author(s):  
Theo Kiesel ◽  
Steffen Marburg

The most common simulation approach in rotor dynamics is based on beam models. Usually, these models are very compact and come at low computational costs. However, they are afflicted with a number of limitations, making them insufficient for the analysis of more complex rotor systems, which require 3D solid modeling. General purpose FEM codes offer full 3D solid modeling capabilities, but the question still remains, whether they are capable of correctly taking into account all the effects that arise from rotation. This paper provides an example of a complex, highly nonlinear rotor system, which cannot be simulated or even modeled accurately by using beam elements, but rather requires 3D solid modeling. ABAQUS is used-as a representative example for a general purpose FEM code-to build up an appropriate model. By doing so, the paper addresses the question, whether a general purpose FEM code is able to cover the necessary rotor dynamic effects. The model which is derived here takes into account nonlinear stiffness behavior, and includes contact between different components of a rotor assembly. The objective is to simulate a run-up through a bending resonance, using direct time integration. The simulation results are compared with experiments, showing good consistency. During the crossing of the critical speed due to the bending resonance, mode-locking can be observed in the experiment and is well represented by the simulation model.


Sign in / Sign up

Export Citation Format

Share Document