HOTT Power Controller With Bi-Directional Converter (HPB)

Author(s):  
Mohammad Lutfur Rahman ◽  
Shunsuke Oka ◽  
Yasuyuki Shirai
Keyword(s):  
Author(s):  
James F. Soeder ◽  
Anne Mcnelis ◽  
Raymond Beach ◽  
Nancy McNelis ◽  
Timothy Dever ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2115
Author(s):  
Mostafa Abdollahi ◽  
Jose Ignacio Candela ◽  
Andres Tarraso ◽  
Mohamed Atef Elsaharty ◽  
Elyas Rakhshani

Nowadays, modern power converters installed in renewable power plants can provide flexible electromechanical characteristics that rely on the developed control technologies such as Synchronous Power Controller (SPC). Since high renewable penetrated power grids result in a low-inertia system, this electromechanical characteristic provides support to the dynamic stability of active power and frequency in the power generation area. This goal can be achieved through the proper tuning of virtual electromechanical parameters that are embedded in the control layers of power converters. In this paper, a novel mathematical pattern and strategy have been proposed to adjust dynamic parameters in Renewable Static Synchronous Generators controlled by SPC (RSSG-SPC). A detailed dynamic modeling was obtained for a feasible design of virtual damping coefficient and virtual moment of inertia in the electrometrical control layer of RSSG-SPC’s power converters. Mathematical solutions, modal analysis outcomes, time-domain simulation results, and real-time validations of the test in IEEE-14B benchmark confirm that the proposed method is an effective procedure for the dynamic design of RSSG-SPC to provide these dynamic stability supports in grid connection.


2017 ◽  
Vol 45 (18) ◽  
pp. 1996-2006 ◽  
Author(s):  
Mohammad Najjar ◽  
Shahrokh Farhangi ◽  
Hossein Iman-Eini
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document