A dsPIC-based constant power controller for induction heating applications

Author(s):  
Supapong Nuttawong ◽  
Sumate Naetiladdanon ◽  
Anawach Sangswang ◽  
Chayant Koompai
2017 ◽  
Vol 1 (2) ◽  
pp. 13
Author(s):  
Sajib Sen ◽  
Md. Ariful Islam

Abstract: In this paper, a 12V, 2.4W battery less solar power controller (BLSPC), capable of driving load at constant low power, has been proposed, designed and practically implemented with minimal efficiency sacrifice irrespective of solar radiance variation. This device utilizes power electronic circuits, more specifically a Buck-Boost DC-DC converter along with Maximum Power Point Tracking (MPPT) algorithm to perform the desired task. Starting from 100w/solar radiation the controller can provide constant power 2.4 watts at 12V without using any storage facilities. The output voltage can be adjusted to any desired level from 0V to 12V DC depending on the application at consumer premises. In this work, efficiency up to 90% at shadow weather phenomenon has been achieved. Moreover, this power controller can be used in consumer premises for direct-coupled system with solar panel irrespective of solar radiation variance.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


2011 ◽  
Vol 49 (03) ◽  
pp. 231-236 ◽  
Author(s):  
Song-Lee Du ◽  
Sung-Hun Cho ◽  
In-Yong Ko ◽  
Jung-Mann Doh ◽  
Jin-Kook Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document