Utilitarian Coalition Formation Between Autonomous Agents for Cooperative Information Gathering

Author(s):  
Matthias Klusch
2020 ◽  
Vol 34 (2) ◽  
Author(s):  
Mikko Lauri ◽  
Joni Pajarinen ◽  
Jan Peters

Abstract Decentralized policies for information gathering are required when multiple autonomous agents are deployed to collect data about a phenomenon of interest when constant communication cannot be assumed. This is common in tasks involving information gathering with multiple independently operating sensor devices that may operate over large physical distances, such as unmanned aerial vehicles, or in communication limited environments such as in the case of autonomous underwater vehicles. In this paper, we frame the information gathering task as a general decentralized partially observable Markov decision process (Dec-POMDP). The Dec-POMDP is a principled model for co-operative decentralized multi-agent decision-making. An optimal solution of a Dec-POMDP is a set of local policies, one for each agent, which maximizes the expected sum of rewards over time. In contrast to most prior work on Dec-POMDPs, we set the reward as a non-linear function of the agents’ state information, for example the negative Shannon entropy. We argue that such reward functions are well-suited for decentralized information gathering problems. We prove that if the reward function is convex, then the finite-horizon value function of the Dec-POMDP is also convex. We propose the first heuristic anytime algorithm for information gathering Dec-POMDPs, and empirically prove its effectiveness by solving discrete problems an order of magnitude larger than previous state-of-the-art. We also propose an extension to continuous-state problems with finite action and observation spaces by employing particle filtering. The effectiveness of the proposed algorithms is verified in domains such as decentralized target tracking, scientific survey planning, and signal source localization.


Author(s):  
U. Gross ◽  
P. Hagemann

By addition of analytical equipment, scanning transmission accessories and data processing equipment the basic transmission electron microscope (TEM) has evolved into a comprehensive information gathering system. This extension has led to increased complexity of the instrument as compared with the straightforward imaging microscope, since in general new information capacity has required the addition of new control hardware. The increased operational complexity is reflected in a proliferation of knobs and buttons.In the conventional electron microscope design the operating panel of the instrument has distinct control elements to alter optical conditions of the microscope column in different modes. As a consequence a multiplicity of control functions has been inevitable. Examples of this are the three pairs of focus and magnification controls needed for TEM imaging, diffraction patterns, and STEM images.


2017 ◽  
Author(s):  
Eugenia Isabel Gorlin ◽  
Michael W. Otto

To live well in the present, we take direction from the past. Yet, individuals may engage in a variety of behaviors that distort their past and current circumstances, reducing the likelihood of adaptive problem solving and decision making. In this article, we attend to self-deception as one such class of behaviors. Drawing upon research showing both the maladaptive consequences and self-perpetuating nature of self-deception, we propose that self-deception is an understudied risk and maintaining factor for psychopathology, and we introduce a “cognitive-integrity”-based approach that may hold promise for increasing the reach and effectiveness of our existing therapeutic interventions. Pending empirical validation of this theoretically-informed approach, we posit that patients may become more informed and autonomous agents in their own therapeutic growth by becoming more honest with themselves.


Sign in / Sign up

Export Citation Format

Share Document