Modular Forms as τ-Functions for Certain Integrable Reductions of the Yang-Mills Equations

1993 ◽  
pp. 115-129 ◽  
Author(s):  
Leon A. Takhtajan
Keyword(s):  
2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Daniele Dorigoni ◽  
Michael B. Green ◽  
Congkao Wen

Abstract The exact expressions for integrated maximal U(1)Y violating (MUV) n-point correlators in SU(N) $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory are determined. The analysis generalises previous results on the integrated correlator of four superconformal primaries and is based on supersymmetric localisation. The integrated correlators are functions of N and τ = θ/(2π) + 4πi/$$ {g}_{YM}^2 $$ g YM 2 , and are expressed as two-dimensional lattice sums that are modular forms with holomorphic and anti-holomorphic weights (w, −w) where w = n − 4. The correlators satisfy Laplace-difference equations that relate the SU(N+1), SU(N) and SU(N−1) expressions and generalise the equations previously found in the w = 0 case. The correlators can be expressed as infinite sums of Eisenstein modular forms of weight (w, −w). For any fixed value of N the perturbation expansion of this correlator is found to start at order ($$ {g}_{YM}^2 $$ g YM 2 N)w. The contributions of Yang-Mills instantons of charge k > 0 are of the form qkf(gYM), where q = e2πiτ and f(gYM) = O($$ {g}_{YM}^{-2w} $$ g YM − 2 w ) when $$ {g}_{YM}^2 $$ g YM 2 ≪ 1. Anti-instanton contributions have charge k < 0 and are of the form $$ {\overline{q}}^{\left|k\right|}\hat{f}\left({g}_{YM}\right) $$ q ¯ k f ̂ g YM , where $$ \hat{f}\left({g}_{YM}\right)=O\left({g}_{YM}^{2w}\right) $$ f ̂ g YM = O g YM 2 w when $$ {g}_{YM}^2 $$ g YM 2 ≪ 1. Properties of the large-N expansion are in agreement with expectations based on the low energy expansion of flat-space type IIB superstring amplitudes. We also comment on the identification of n-point free-field MUV correlators with the integrands of (n − 4)-loop perturbative contributions to the four-point correlator. In particular, we emphasise the important rôle of SL(2, ℤ)-covariance in the construction.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Alejandro Cabo-Bizet ◽  
Sameer Murthy

Abstract We find a family of complex saddle-points at large N of the matrix model for the superconformal index of SU(N ) $$ \mathcal{N} $$ N = 4 super Yang-Mills theory on S3× S1 with one chemical potential τ . The saddle-point configurations are labelled by points (m, n) on the lattice Λτ = ℤτ + ℤ with gcd(m, n) = 1. The eigenvalues at a given saddle are uniformly distributed along a string winding (m, n) times along the (A, B) cycles of the torus ℂ/Λτ . The action of the matrix model extended to the torus is closely related to the Bloch-Wigner elliptic dilogarithm, and the related Bloch formula allows us to calculate the action at the saddle-points in terms of real-analytic Eisenstein series. The actions of (0, 1) and (1, 0) agree with that of pure AdS5 and the supersymmetric AdS5 black hole, respectively. The black hole saddle dominates the canonical ensemble when τ is close to the origin, and there are new saddles that dominate when τ approaches rational points. The extension of the action in terms of modular forms leads to a simple treatment of the Cardy-like limit τ → 0.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Michael B. Green ◽  
Congkao Wen

Abstract This paper concerns a special class of n-point correlation functions of operators in the stress tensor supermultiplet of $$ \mathcal{N} $$ N = 4 supersymmetric SU(N) Yang-Mills theory. These are “maximal U(1)Y-violating” correlators that violate the bonus U(1)Y charge by a maximum of 2(n − 4) units. We will demonstrate that such correlators satisfy SL(2, ℤ)-covariant recursion relations that relate n-point correlators to (n − 1)-point correlators in a manner analogous to the soft dilaton relations that relate the corresponding amplitudes in flat-space type IIB superstring theory. These recursion relations are used to determine terms in the large-N expansion of n-point maximal U(1)Y-violating correlators in the chiral sector, including correlators with four superconformal stress tensor primaries and (n − 4) chiral Lagrangian operators, starting from known properties of the n = 4 case. We concentrate on the first three orders in 1/N beyond the supergravity limit. The Mellin representations of the correlators are polynomials in Mellin variables, which correspond to higher derivative contact terms in the low-energy expansion of type IIB superstring theory in AdS5× S5 at the same orders as R4, d4R4 and d6R4. The coupling constant dependence of these terms is found to be described by non-holomorphic modular forms with holomorphic and anti-holomorphic weights (n − 4, 4 − n) that are SL(2, ℤ)-covariant derivatives of Eisenstein series and certain generalisations. This determines a number of non-leading contributions to U(1)Y-violating n-particle interactions (n > 4) in the low-energy expansion of type IIB superstring amplitudes in AdS5× S5.


1982 ◽  
Vol 43 (C3) ◽  
pp. C3-326-C3-327
Author(s):  
K. S. Stelle
Keyword(s):  

1992 ◽  
Vol 162 (2) ◽  
pp. 161 ◽  
Author(s):  
B.P. Kosyakov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document