Lossy Compression, Classification, and Regression

Author(s):  
Robert M. Gray
2010 ◽  
Vol 130 (8) ◽  
pp. 945-952 ◽  
Author(s):  
Hiroyuki Tanaka ◽  
Kouhei Ohnishi
Keyword(s):  

2015 ◽  
Vol 74 (20) ◽  
pp. 1803-1821 ◽  
Author(s):  
V. V. Lukin ◽  
S. K. Abramov ◽  
R.A. Kozhemiakin ◽  
Benoit Vozel ◽  
B. Djurovic ◽  
...  

2010 ◽  
Vol 69 (6) ◽  
pp. 537-563 ◽  
Author(s):  
N. N. Ponomarenko ◽  
M. S. Zriakhov ◽  
A. Kaarna

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1578
Author(s):  
Daniel Szostak ◽  
Adam Włodarczyk ◽  
Krzysztof Walkowiak

Rapid growth of network traffic causes the need for the development of new network technologies. Artificial intelligence provides suitable tools to improve currently used network optimization methods. In this paper, we propose a procedure for network traffic prediction. Based on optical networks’ (and other network technologies) characteristics, we focus on the prediction of fixed bitrate levels called traffic levels. We develop and evaluate two approaches based on different supervised machine learning (ML) methods—classification and regression. We examine four different ML models with various selected features. The tested datasets are based on real traffic patterns provided by the Seattle Internet Exchange Point (SIX). Obtained results are analyzed using a new quality metric, which allows researchers to find the best forecasting algorithm in terms of network resources usage and operational costs. Our research shows that regression provides better results than classification in case of all analyzed datasets. Additionally, the final choice of the most appropriate ML algorithm and model should depend on the network operator expectations.


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Waldemar Kłobus ◽  
Paweł Cieśliński ◽  
Lukas Knips ◽  
Paweł Kurzyński ◽  
Wiesław Laskowski

Sign in / Sign up

Export Citation Format

Share Document