dry contact
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 45)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Author(s):  
James Lever ◽  
Susan Taylor ◽  
Arnold Song ◽  
Zoe Courville ◽  
Ross Lieblappen ◽  
...  

The mechanics of snow friction are central to competitive skiing, safe winter driving and efficient polar sleds. For nearly 80 years, prevailing theory has postulated that self-lubrication accounts for low kinetic friction on snow: dry-contact sliding warms snow grains to the melting point, and further sliding produces meltwater layers that lubricate the interface. We sought to verify that self-lubrication occurs at the grain scale and to quantify the evolution of real contact area to aid modeling. We used high-resolution (15 μm) infrared thermography to observe the warming of stationary snow under a rotating polyethylene slider. Surprisingly, we did not observe melting at contacting snow grains despite low friction values. In some cases, slider shear failed inter-granular bonds and produced widespread snow movement with no persistent contacts to melt (μ < 0.03). When the snow grains did not move and persistent contacts evolved, the slider abraded rather than melted the grains at low resistance (μ < 0.05). Optical microscopy revealed that the abraded particles deposited in air pockets between grains and thereby carried heat away from the interface, a process not included in current models. Overall, our results challenge whether self-lubrication is indeed the dominant mechanism underlying low snow kinetic friction.


2021 ◽  
Author(s):  
James Lever ◽  
Emily Asenath-Smith ◽  
Susan Taylor ◽  
Austin Lines

Sliding friction on ice and snow is characteristically low at temperatures common on Earth’s surface. This slipperiness underlies efficient sleds, winter sports, and the need for specialized tires. Friction can also play micro-mechanical role affecting ice compressive and crushing strengths. Researchers have proposed several mechanisms thought to govern ice and snow friction, but directly validating the underlying mechanics has been difficult. This may be changing, as instruments capable of micro-scale measurements and imaging are now being brought to bear on friction studies. Nevertheless, given the broad regimes of practical interest (interaction length, temperature, speed, pressure, slider properties, etc.), it may be unrealistic to expect that a single mechanism accounts for why ice and snow are slippery. Because bulk ice, and the ice grains that constitute snow, are solids near their melting point at terrestrial temperatures, most research has focused on whether a lubricating water film forms at the interface with a slider. However, ice is extremely brittle, and dry-contact abrasion and wear at the front of sliders could prevent or delay a transition to lubricated contact. Also, water is a poor lubricant, and lubricating films thick enough to separate surface asperities may not form for many systems of interest. This article aims to assess our knowledge of the mechanics underlying ice and snow friction.


Author(s):  
H Zaidi ◽  
M Amirat ◽  
A Beloufa

Some industrial applications require the use of self-lubricating materials when fluid lubrication cannot be used. Carbon-based materials and in particular graphites are usually a used solution. However, the application of these materials is limited at high temperature; these materials are exposed to significant degradation and to high friction due to their high sensitivity to the air humidity and to the desorption phenomenon. This study determines the influence of a specific metallic impregnation on the graphite bearing, which is submitted to a severe thermo-vibratory loading by fretting against a stainless steel surface. The stainless steel surface has undergone a nitriding treatment by plasma. During the fretting contact, a strong transfer of the impregnant takes place from the impregnated graphite bearing to the steel conterface by adhesion; this deposit film allows a significant improvement in the tribological properties of the contact surfaces at high temperature.


2021 ◽  
Author(s):  
James Lever ◽  
Susan Taylor ◽  
Garrett Hoch ◽  
Charles Daghlian

The long-accepted theory to explain why snow is slippery postulates self-lubrication: frictional heat from sliding melts and thereby lubricates the contacting snow grains. We recently published micro-scale interface observations that contradicted this explanation: contacting snow grains abraded and did not melt under a polyethylene slider, despite low friction values. Here we provide additional observational and theoretical evidence that abrasion can govern snow kinetic friction. We obtained coordinated infrared, visible-light and scanning-electron micrographs that confirm that the evolving shapes observed during our tribometer tests are contacting snow grains polished by abrasion, and that the wear particles can sinter together and fill the adjacent pore spaces. Furthermore, dry-contact abrasive wear reasonably predicts the evolution of snow-slider contact area and sliding-heat-source theory confirms that contact temperatures would not reach 0°C during our tribometer tests. Importantly, published measurements of interface temperatures also indicate that melting did not occur during field tests on sleds and skis. Although prevailing theory anticipates a transition from dry to lubricated contact along a slider, we suggest that dry-contact abrasion and heat flow can prevent this transition from occurring for snow-friction scenarios of practical interest.


Author(s):  
Dedi R.P. Cupu ◽  
◽  
Nandha Syamza ◽  

This study aims to design the build of a wear test tool or a tribometer that intends to measure the coefficient of friction and wear rate in contact materials in form of disc-on-disc. This tribometer test tool can be used in dry contact (without any intermediate material between contacts) or wet contacts (by using intermediate material between contacts such as lubricant). The application of this disc-on-disc type of tribometer is the contact that occurs between roller elements (solid cylinders) and inner rings on cylindrical rolling bearings. In this paper is used the design method of VDI 2221. The steps are to clarify the task, determine the function of structure, look for the principle of the solution and its structure, describe the variants that can be realized and give shape to the model and detail the manufacture and used. This tool is used to test components consisting of two discs where the material can be varied. The design of the surface contact side mechanism is done in a radial direction. So, the disc can rotate (rolling contact) and this test tool can be varied load and rotation. The final result of this study is an engineering document in the form of layout drawings and assembly images as well as detailed images of each component and bills of materials.


2021 ◽  
Vol 15 ◽  
Author(s):  
Beatriz Vasconcelos ◽  
Patrique Fiedler ◽  
René Machts ◽  
Jens Haueisen ◽  
Carlos Fonseca

Electroencephalography (EEG) is increasingly used for repetitive and prolonged applications like neurofeedback, brain computer interfacing, and long-term intermittent monitoring. Dry-contact electrodes enable rapid self-application. A common drawback of existing dry electrodes is the limited wearing comfort during prolonged application. We propose a novel dry Arch electrode. Five semi-circular arches are arranged parallelly on a common baseplate. The electrode substrate material is a flexible thermoplastic polyurethane (TPU) produced by additive manufacturing. A chemical coating of Silver/Silver-Chloride (Ag/AgCl) is applied by electroless plating using a novel surface functionalization method. Arch electrodes were manufactured and validated in terms of mechanical durability, electrochemical stability, in vivo applicability, and signal characteristics. We compare the results of the dry arch electrodes with dry pin-shaped and conventional gel-based electrodes. 21-channel EEG recordings were acquired on 10 male and 5 female volunteers. The tests included resting state EEG, alpha activity, and a visual evoked potential. Wearing comfort was rated by the subjects directly after application, as well as at 30 min and 60 min of wearing. Our results show that the novel plating technique provides a well-adhering electrically conductive and electrochemically stable coating, withstanding repetitive strain and bending tests. The signal quality of the Arch electrodes is comparable to pin-shaped dry electrodes. The average channel reliability of the Arch electrode setup was 91.9 ± 9.5%. No considerable differences in signal characteristics have been observed for the gel-based, dry pin-shaped, and arch-shaped electrodes after the identification and exclusion of bad channels. The comfort was improved in comparison to pin-shaped electrodes and enabled applications of over 60 min duration. Arch electrodes required individual adaptation of the electrodes to the orientation and hairstyle of the volunteers. This initial preparation time of the 21-channel cap increased from an average of 5 min for pin-like electrodes to 15 min for Arch electrodes and 22 min for gel-based electrodes. However, when re-applying the arch electrode cap on the same volunteer, preparation times of pin-shaped and arch-shaped electrodes were comparable. In summary, our results indicate the applicability of the novel Arch electrode and coating for EEG acquisition. The novel electrode enables increased comfort for prolonged dry-contact measurement.


2021 ◽  
pp. 110207
Author(s):  
Bin Zhang ◽  
Reza Namakian ◽  
Xiaoman Zhang ◽  
W.J. Meng ◽  
Jennifer Hay ◽  
...  
Keyword(s):  

Author(s):  
Aaisha Diaa-Aldeen Abdullah ◽  
Auns Q. Al-Neami

Traditional wet silver/silver chloride electrodes are used to record electroencephalography (EEG) signals mainly because of their potential repeatability, excellent signal to noise ratio and biocompatibility. This type of electrode is only suitable for conductive glue, which can irritate the skin and cause injury. In addition, as time goes the conductive gel will be dehydrated so the quality of the EEG signal will decrease. To overcome these problems, 3D printed dry-contact electrodes with multi-pins are designed in this work to measure brain signals without prior preparation or gel application. 3D printed electrodes are made from polylactic acids polymer and coated with suitable materials to enhance the conductivity. Electrode-scalp impedance on human was also measured. To evaluate the dry-contact electrode, EEG measurement are performed in subjects and compared with EEG signals acquired by wet electrode by using linear correlation coefficient. Experimentally results showed that the average electrode-skin impedance change of dry electrode in frontal site (9.42-7.25KΩ) and in occipital site (9.56-8.66KΩ). The correlation coefficient between dry and wet electrodes in frontal site (91.4%) and in occipital site (80%). To conclude, the 3D printed dry-contact electrode can be will promising applied on hairy site and provide a promising solutions for long-term monitoring EEG.


Vacuum ◽  
2021 ◽  
pp. 110482
Author(s):  
A. Blutmager ◽  
M. Varga ◽  
U. Cihak-Bayr ◽  
W. Friesenbichler ◽  
P.H. Mayrhofer

Sign in / Sign up

Export Citation Format

Share Document