Extensions of the Standard Model: Grand Unification

Author(s):  
Byron P. Roe
2019 ◽  
Author(s):  
Vitaly Kuyukov

This paper analyses a method of producing the Higgs mass via the gravitational field. This approach has become very popular in recent years, as the consideration of other forces do not help in solving the problem of mass hierarchy. Not understand the difference between scales of the standard model and Grand unification theory. Here, we present a heuristic mechanism which eliminated this difference. The idea is that the density of the condensate of the Higgs is increased so that it is necessary to take into account self gravitational potential energy of the Higgs boson. The result is as follows. The mass of the Higgs is directly proportional to the cell density of the Higgs bosons. Or else the mass of the Higgs is inversely proportional to the cell volume, which is the Higgs boson in the condensate. The most interesting dimension of this cell condensation is equal to the scale of Grand unification. This formula naturally combines the scale of the standard model and Grand unification through gravitational condensation.


2013 ◽  
Vol 28 (05) ◽  
pp. 1350010 ◽  
Author(s):  
F. R. KLINKHAMER

It is pointed out (not for the first time) that the minimal Standard Model, without additional gauge-singlet right-handed neutrinos or isotriplet Higgs fields, allows for nonvanishing neutrino masses and mixing. The required interaction term is non-renormalizable and violates B-L conservation. The ultimate explanation of this interaction term may or may not rely on grand unification.


2016 ◽  
Vol 31 (20n21) ◽  
pp. 1630031 ◽  
Author(s):  
Yutaka Hosotani

Four-dimensional Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unification scenario. [Formula: see text] gauge-Higgs EW unification in the Randall–Sundrum warped space is successful at low energies. The Higgs field appears as an Aharonov–Bohm phase [Formula: see text] in the fifth dimension. Its mass is generated at the quantum level and is finite. The model yields almost the same phenomenology as the standard model for [Formula: see text], and predicts [Formula: see text] bosons around 6–10 TeV with very broad widths. The scenario is generalized to [Formula: see text] gauge-Higgs grand unification. Fermions are introduced in the spinor and vector representations of [Formula: see text]. Proton decay is naturally forbidden.


2005 ◽  
Vol 20 (18) ◽  
pp. 4241-4257 ◽  
Author(s):  
B. ANANTHANARAYAN ◽  
P. N. PANDITA

We consider supersymmetric SO(10) grand unification where the unified gauge group can break to the Standard Model gauge group through different chains. The breaking of SO(10) necessarily involves the reduction of the rank, and consequent generation of nonuniversal supersymmetry breaking scalar mass terms. We derive squark and slepton mass relations, taking into account these nonuniversal contributions to the sfermion masses, which can help distinguish between the different chains through which the SO(10) gauge group breaks to the Standard Model gauge group. We then study some implications of these nonuniversal supersymmetry breaking scalar masses for the low energy phenomenology.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012010
Author(s):  
Peter Rowlands

Abstract Around the time of the completion of the Standard Model of particle physics in the 1970s, schemes were put forward for unifying the three gauge interactions (electric, strong and weak) using the renormalization equations at an energy approaching the Planck mass. Though these looked promising, the exact unification never materialised, and doubts have been raised about whether this Grand Unification can be achieved. It may be possible, however, to create Grand Unification at the Planck mass if we start with a radical examination of the nature of the colour model of quarks.


1997 ◽  
Vol 12 (31) ◽  
pp. 5531-5554 ◽  
Author(s):  
John Ellis

The present status of the Standard Model and its experimental tests are reviewed, including indications on the likely mass of the Higgs boson. Also discussed are the motivations for supersymmetry and grand unification, searches for sparticles at LEP, neutrino oscillations, and the prospects for physics at the LHC.


Sign in / Sign up

Export Citation Format

Share Document