higgs fields
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Naoyuki Haba ◽  
Toshifumi Yamada

Abstract We study colored Higgsino-mediated proton decay (dimension-five proton decay) in a model based on the flipped SU(5) GUT. In the model, the GUT-breaking 10, $$ \overline{\mathbf{10}} $$ 10 ¯ fields have a GUT-scale mass term and gain VEVs through higher-dimensional operators, which induces an effective mass term between the color triplets in the 5, $$ \overline{\mathbf{5}} $$ 5 ¯ Higgs fields that is not much smaller than the GUT scale. This model structure gives rise to observable dimension-five proton decay, and at the same time achieves moderate suppression on dimension-five proton decay that softens the tension with the current bound on Γ(p → K+$$ \overline{\nu} $$ ν ¯ ). We investigate the flavor dependence of the Wilson coefficients of the operators relevant to dimension-five proton decay, by relating them with diagonalized Yukawa couplings and CKM matrix components in MSSM, utilizing the fact that the GUT Yukawa couplings are in one-to-one correspondence with the MSSM Yukawa couplings in flipped models. Then we numerically evaluate the Wilson coefficients, and predict the distributions of the ratios of the partial widths of various proton decay modes.


2022 ◽  
Vol 258 ◽  
pp. 02001
Author(s):  
Jeff Greensite ◽  
Kazue Matsuyama

We present evidence that seemingly elementary and non-composite objects, namely isolated static fermions in certain gauge Higgs theories, have a mass spectrum corresponding to localized excitations of the surrounding gauge and Higgs fields.


Author(s):  
Nigel J. Hitchin ◽  

The paper studies explicitly the Hitchin system restricted to the Higgs fields on a fixed very stable rank 2 bundle in genus 2 and 3. The associated families of quadrics relate to both the geometry of Penrose's twistor spaces and several classical results.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Shuntaro Aoki ◽  
Hyun Min Lee ◽  
Adriana G. Menkara

Abstract We propose a new construction of the supergravity inflation as an UV completion of the Higgs-R2 inflation. In the dual description of R2-supergravity, we show that there appear dual chiral superfields containing the scalaron or sigma field in the Starobinsky inflation, which unitarizes the supersymmetric Higgs inflation with a large non-minimal coupling up to the Planck scale. We find that a successful slow-roll inflation is achievable in the Higgs-sigma field space, but under the condition that higher curvature terms are introduced to cure the tachyonic mass problems for spectator singlet scalar fields. We also discuss supersymmetry breaking and its transmission to the visible sector as a result of the couplings of the dual chiral superfields and the non-minimal gravity coupling of the Higgs fields.


Author(s):  
Mark Andrea A. de Cataldo ◽  
Jochen Heinloth ◽  
Luca Migliorini

Abstract We compute the supports of the perverse cohomology sheaves of the Hitchin fibration for GL n {\mathrm{GL}_{n}} over the locus of reduced spectral curves. In contrast to the case of meromorphic Higgs fields we find additional supports at the loci of reducible spectral curves. Their contribution to the global cohomology is governed by a finite twist of Hitchin fibrations for Levi subgroups. The corresponding summands give non-trivial contributions to the cohomology of the moduli spaces for every n ≥ 2 {n\geq{2}} . A key ingredient is a restriction result for intersection cohomology sheaves that allows us to compare the fibration to the one defined over versal deformations of spectral curves.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yang Bai ◽  
Mrunal Korwar

Abstract Spherically symmetric magnetic and dyonic black holes with a magnetic charge Q = 2 are studied in the Standard Model and general relativity. A magnetically charged black hole with mass below 9.3 × 1035 GeV has a “hairy” cloud of electroweak gauge and Higgs fields outside the event horizon with 1/mW in size. An extremal magnetic black hole has a hair mass of 3.6 TeV, while an extremal dyonic black hole has an additional mass of q2 × 1.6 GeV for a small electric charge q ≪ 2π/e2. A hairy dyonic black hole with an integer charge is not stable and can decay into a magnetic one plus charged fermions. On the other hand, a hairy magnetic black hole can evolve via Hawking radiation into a nearly extremal one that is cosmologically stable and an interesting object to be searched for.


2021 ◽  
Vol 254 ◽  
pp. 02017
Author(s):  
Boris Shevtsov

There is still a problem of a correct and accurate description of the dynamo and its uses in various fields of physics. To solve this problem, a special and universal representation of dynamo is proposed. The magnetic induction equation of dynamo is presented in the form of a Lienard relaxation oscillator with cubic nonlinear restoring force corresponding to the Mexican hat or champagne bottle potential which is used to determine the Higgs fields which are considered here in its general sense. Universal dynamo paradigm in field theory which can be used to describe disasters is proposed. Using solar activity as an example, it is shown how a dynamo induces a magnetic analogue of the Higgs fields with a broken symmetry of the magnetic field. Various dynamo modes are considered and different dynamo numbers are estimated. The dynamo effect can be used in field theory as an alternative to spontaneous symmetry breaking. Opportunities for the promotion of the new dynamo paradigm are discussed.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amin Aboubrahim ◽  
Pran Nath ◽  
Raza M. Syed

Abstract We consider a class of unified models based on the gauge group SO(10) which with appropriate choice of Higgs representations generate in a natural way a pair of light Higgs doublets needed to accomplish electroweak symmetry breaking. In this class of models higher dimensional operators of the form matter-matter-Higgs-Higgs in the superpotential after spontaneous breaking of the GUT symmetry generate contributions to Yukawa couplings which are comparable to the ones from cubic interactions. Specifically we consider an SO(10) model with a sector consisting of 126 + $$ \overline{126} $$ 126 ¯ + 210 of heavy Higgs which breaks the GUT symmetry down to the standard model gauge group and a sector consisting of 2 × 10 + 120 of light Higgs fields. In this model we compute the corrections from the quartic interactions to the Yukawa couplings for the top and the bottom quarks and for the tau lepton. It is then shown that inclusion of these corrections to the GUT scale Yukawas allows for consistency of the top, bottom and tau masses with experiment for low tan β with a value as low as tan β of 5–10. We compute the sparticle spectrum for a set of benchmarks and find that satisfaction of the relic density is achieved via a compressed spectrum and coannihilation and three sets of coannihilations appear: chargino-neutralino, stop-neutralino and stau-neutralino. We investigate the chargino-neutralino coannihilation in detail for the possibility of observation of the light chargino at the high luminosity LHC (HL-LHC) and at the high energy LHC (HE-LHC) which is a possible future 27 TeV hadron collider. It is shown that all benchmark models but one can be discovered at HL-LHC and all would be discoverable at HE-LHC. The ones discoverable at both machines require a much shorter time scale and a lower integrated luminosity at HE-LHC.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yu-Cheng Qiu ◽  
S.-H. Henry Tye

Abstract String theory has no parameter except the string scale MS, so the Planck scale MPl, the supersymmetry-breaking scale "Image missing", the electroweak scale mEW as well as the vacuum energy density (cosmological constant) Λ are to be determined dynamically at any local minimum solution in the string theory landscape. Here we consider a model that links the supersymmetric electroweak phenomenology (bottom up) to the string theory motivated flux compactification approach (top down). In this model, supersymmetry is broken by a combination of the racetrack Kähler uplift mechanism, which naturally allows an exponentially small positive Λ in a local minimum, and the anti-D3-brane in the KKLT scenario. In the absence of the Higgs doublets from the supersymmetric standard model, one has either a small Λ or a big enough "Image missing", but not both. The introduction of the Higgs fields (with their soft terms) allows a small Λ and a big enough "Image missing" simultaneously. Since an exponentially small Λ is statistically preferred (as the properly normalized probability distribution P(Λ) diverges at Λ = 0+), identifying the observed Λobs to the median value Λ50% yields mEW∼ 100 GeV. We also find that the warped anti-D3-brane tension has a SUSY-breaking scale "Image missing" ∼ 100 mEW while the SUSY-breaking scale that directly correlates with the Higgs fields in the visible sector is "Image missing" ≃ mEW.


Sign in / Sign up

Export Citation Format

Share Document