Higher Order Asymptotic Theory for Tests and Studentized Statistics in Time Series

Author(s):  
Masanobu Taniguchi
2004 ◽  
Vol 14 (08) ◽  
pp. 2979-2990 ◽  
Author(s):  
FANJI GU ◽  
ENHUA SHEN ◽  
XIN MENG ◽  
YANG CAO ◽  
ZHIJIE CAI

A concept of higher order complexity is proposed in this letter. If a randomness-finding complexity [Rapp & Schmah, 2000] is taken as the complexity measure, the first-order complexity is suggested to be a measure of randomness of the original time series, while the second-order complexity is a measure of its degree of nonstationarity. A different order is associated with each different aspect of complexity. Using logistic mapping repeatedly, some quasi-stationary time series were constructed, the nonstationarity degree of which could be expected theoretically. The estimation of the second-order complexity of these time series shows that the second-order complexities do reflect the degree of nonstationarity and thus can be considered as its indicator. It is also shown that the second-order complexities of the EEG signals from subjects doing mental arithmetic are significantly higher than those from subjects in deep sleep or resting with eyes closed.


Sign in / Sign up

Export Citation Format

Share Document