mental arithmetic
Recently Published Documents


TOTAL DOCUMENTS

803
(FIVE YEARS 163)

H-INDEX

55
(FIVE YEARS 6)

Author(s):  
Nasia Sheikh ◽  
Aaron A. Phillips ◽  
Shaun Ranada ◽  
Matthew Lloyd ◽  
Karolina Kogut ◽  
...  

Background: Initial orthostatic hypotension (IOH) is defined by a large drop in blood pressure (BP) within 15 s of standing. IOH often presents during an active stand, but not with a passive tilt, suggesting that a muscle activation reflex involving lower body muscles plays an important role. To our knowledge, there is no literature exploring how sympathetic activation affects IOH. We hypothesized involuntary muscle contractions before standing would significantly reduce the drop in BP seen in IOH while increasing sympathetic activity would not. Methods: Study participants performed 4 sit-to-stand maneuvers including a mental stress test (serial 7 mental arithmetic stress test), cold pressor test, electrical stimulation, and no intervention. Continuous heart rate and beat-to-beat BP were measured. Cardiac output and systemic vascular resistance were estimated from these waveforms. Data are presented as mean±SD. Results: A total of 23 female IOH participants (31±8 years) completed the study. The drops in systolic BP following the serial 7 mental arithmetic stress test (−26±12 mm Hg; P =0.004), cold pressor test (−20±15 mm Hg; P <0.001), and electrical stimulation (−28±12 mm Hg; P =0.01) were significantly reduced compared with no intervention (−34±11 mm Hg). The drops in systemic vascular resistance following the serial 7 mental arithmetic stress test (−391±206 dyne×s/cm 5 ; P =0.006) and cold pressor test (−386±179 dyne×s/cm 5 ; P =0.011) were significantly reduced compared with no intervention (−488±173 dyne×s/cm 5 ). Cardiac output was significantly increased upon standing (7±2 L/min) compared with during the sit (6±1 L/min; P <0.001) for electrical stimulation. Conclusion: Sympathetic activation mitigates the BP response in IOH, while involuntary muscle contraction mitigates the BP response and reduces symptoms. Active muscle contractions may induce both of these mechanisms of action in their pretreatment of IOH. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03970551.


2022 ◽  
Vol 8 ◽  
Author(s):  
Anna Katharina Mayr ◽  
Victoria Wieser ◽  
Georg-Christian Funk ◽  
Sherwin Asadi ◽  
Irene Sperk ◽  
...  

Background and Objectives: Patients with chronic obstructive pulmonary disease (COPD) are at increased risk for cardiovascular disease. This study aimed to investigate the relationship between pulmonary hyperinflation and baroreceptor reflex sensitivity (BRS), a surrogate for cardiovascular risk.Methods: 33 patients with COPD, free from clinical cardiovascular disease, and 12 healthy controls were studied. Participants underwent pulmonary function and non-invasive hemodynamic measurements. BRS was evaluated using the sequence method during resting conditions and mental arithmetic stress testing.Results: Patients with COPD had evidence of airflow obstruction [forced expiratory volume in 1 s predicted (FEV1%) 26.5 (23.3–29.1) vs. 91.5 (82.8–100.8); P &lt; 0.001; geometric means (GM) with 95% confidence interval (CI)] and lung hyperinflation [residual volume/total lung capacity (RV/TLC) 67.7 (64.3–71.3) vs. 41.0 (38.8–44.3); P &lt; 0.001; GM with 95% CI] compared to controls. Spontaneous mean BRS (BRSmean) was significantly lower in COPD, both during rest [5.6 (4.2–6.9) vs. 12.0 (9.1–17.6); P = 0.003; GM with 95% CI] and stress testing [4.4 (3.7–5.3) vs. 9.6 (7.7–12.2); P &lt; 0.001; GM with 95% CI]. Stroke volume (SV) was significantly lower in the patient group [−21.0 ml (−29.4 to −12.6); P &lt; 0.001; difference of the means with 95% CI]. RV/TLC was found to be a predictor of BRS and SV (P &lt; 0.05 for both), independent of resting heart rate.Conclusion: We herewith provide evidence of impaired BRS in patients with COPD. Hyperinflation may influence BRS through alteration of mechanosensitive vagal nerve activity.


Author(s):  
Ahamed Basha Abdul Bari ◽  
N. K. Subbalakshmi

Introduction: The link between mental stress and cardiac autonomic regulation plays a significant role in the patho physiological process of cardio neural feedback loop. This study assessed the effect of mental arithmetic and silent reading on heart rate variability, heart rate and respiratory rate in young healthy volunteers. Materials and Methods: R-R intervals were recorded for five minutes in ten healthy volunteers aged 22-24 years of either sex while resting, doing mental arithmetic, and silent reading in a sitting position. Time and frequency domain approaches were used to measure heart rate variability (HRV). In them, heart rate and respiratory rate were also calculated. Using the paired ‘t' test, mean differences in values were evaluated between resting and mental arithmetic; resting and quiet reading conditions. Results: Heart rate and respiratory rate were significantly higher during mental arithmetic (p = 0.012, p<0.0001 respectively) and silent reading compared to resting state (p=0.005, p=0.0002 respectively). There was no significant change in HRV during mental arithmetic and silent reading compared to resting state. Conclusion: Mental arithmetic and silent reading primarily evoke a rise in respiratory rate and heart rate.


2021 ◽  
Author(s):  
◽  
Wei Dai

<p>The present research comprises four experiments designed to explore the role of visual and phonological working memory resources in carry operations or intermediate solutions in complex mental addition and multiplication. A special consideration was given to the effect of arithmetic operation on the relative involvement of visual and phonological resources in complex addition and multiplication.  A pilot study was conducted prior to the experiments, aiming to examine the suitability of visual and phonological stimuli for change detection and working memory capacity estimation. Two staff of Victoria University of Wellington with normal or corrected vision attended the pilot study as participants. Pilot Experiments 1 to 4 tested the suitability for probing visual working memory (VWM) capacity of two types of visual stimulus with different feature dimensions: bars of different orientations and Gabor patches with different orientations and spatial frequencies. A single-probe change-detection experimental paradigm was used, with participants making decisions about whether or not probe items were the same as memory items presented previously. Both presentation durations and set sizes were manipulated. Stable estimates of visual working memory capacities were found when Gabor patches with varied spatial frequencies were used, suggesting its utility as a probe for estimating visual working memory capacity. Pilot Experiment 5 was designed to examine the suitability of pronounceable consonant-vowel-consonant non-words as a probe of phonological working memory (PWM). Valid estimates of PWM capacity were found for both participants, suggesting the suitability of phonological non-words as phonological stimuli of assessing PWM capacities and interfering with information phonologically-represented and maintained in working memory.  Experiments 1 to 4 investigated the relative involvement of visual and phonological working memory resources in carry operations or intermediate solutions in mental addition and multiplication. Fifty-six undergraduate students of Victoria University of Wellington participated all experiments, and 48 of them provided valid data for final analysis. A dual-task interference paradigm was used in all experiments, with arithmetic tasks and visual/phonological change-detection tasks either performed alone, or simultaneously. For arithmetic tasks, double-digit addition problems and multiplication problems comprising one single-digit and one double-digit were presented horizontally and continuously, and participants reported the final solutions verbally. For visual change-detection tasks, study items were visually presented to participants for 1,000ms before they disappeared. After a 4000ms retention interval, a probe item was presented and participants judged whether the probe item was the same as one of the memory items. For phonological change-detection tasks, phonological nonwords were verbally presented to participants sequentially. After a 4000ms retention interval, a probe nonword was presented to participants, and they indicated whether or not the probe was the same as one of the study non-words. Both numbers of carry operations involved in the arithmetic problems (zero, one, and two) and levels of visual/phonological loads (low, medium, and high) were manipulated in all experiments.   For all experiments, the effect of the number of carry operations on calculation performance was observed: arithmetic problems involving more carry operations were solved less rapidly and accurately. This effect was enlarged by concurrent visual and phonological loads, evidenced by significant interactions between task conditions and number of carry operations observed in the accuracy analyses of the arithmetic tasks in all experiments except Experiment 2, in which multiplication problems were solved under visual loads. These findings suggest that both visual and phonological resources are required for the temporary storage of intermediate solutions or carry information in mental addition, while for mental multiplication, only evidence for a role of phonological representations in carry operations was found.  For all experiments, the greater performance impairment of carry problems than no-carry problems associated with the presence of working memory loads was not further increased by increasing load level: There were no significant three-way interactions between task conditions, number of carry operations and load levels in accuracy analyses of arithmetic tasks. One possible explanation for this absence of significant three-way interactions might be attributable to some participants switching between phonological and visual working memory for the temporary storage of carrier information or intermediate solutions as a result of decreasing amount of available phonological or visual working memory resources.  In conclusion, the findings of the present research provide support for a role of both visual and phonological working memory resources in carry operations in mental addition, and a role of phonological working memory resources in carry operation in mental multiplication. Thus, it can be concluded that solving mental arithmetic problems involving carry-operations requires working memory resources. However, these results contradict the prediction of the Triple Code Model, which assumes addition mainly relies on visual processing, and multiplication mainly relies on verbal processing, while complex mental arithmetic is solved with the aid of visual processing regardless of the arithmetic operation. Thus, these results challenge the operation-specific involvement of working memory resources in complex mental arithmetic. However, it should be noted that the same arithmetic problems were solved three times by the same participants, which might have encouraged more activation in phonological processing than visual processing due to the practice effect.</p>


2021 ◽  
Author(s):  
◽  
Wei Dai

<p>The present research comprises four experiments designed to explore the role of visual and phonological working memory resources in carry operations or intermediate solutions in complex mental addition and multiplication. A special consideration was given to the effect of arithmetic operation on the relative involvement of visual and phonological resources in complex addition and multiplication.  A pilot study was conducted prior to the experiments, aiming to examine the suitability of visual and phonological stimuli for change detection and working memory capacity estimation. Two staff of Victoria University of Wellington with normal or corrected vision attended the pilot study as participants. Pilot Experiments 1 to 4 tested the suitability for probing visual working memory (VWM) capacity of two types of visual stimulus with different feature dimensions: bars of different orientations and Gabor patches with different orientations and spatial frequencies. A single-probe change-detection experimental paradigm was used, with participants making decisions about whether or not probe items were the same as memory items presented previously. Both presentation durations and set sizes were manipulated. Stable estimates of visual working memory capacities were found when Gabor patches with varied spatial frequencies were used, suggesting its utility as a probe for estimating visual working memory capacity. Pilot Experiment 5 was designed to examine the suitability of pronounceable consonant-vowel-consonant non-words as a probe of phonological working memory (PWM). Valid estimates of PWM capacity were found for both participants, suggesting the suitability of phonological non-words as phonological stimuli of assessing PWM capacities and interfering with information phonologically-represented and maintained in working memory.  Experiments 1 to 4 investigated the relative involvement of visual and phonological working memory resources in carry operations or intermediate solutions in mental addition and multiplication. Fifty-six undergraduate students of Victoria University of Wellington participated all experiments, and 48 of them provided valid data for final analysis. A dual-task interference paradigm was used in all experiments, with arithmetic tasks and visual/phonological change-detection tasks either performed alone, or simultaneously. For arithmetic tasks, double-digit addition problems and multiplication problems comprising one single-digit and one double-digit were presented horizontally and continuously, and participants reported the final solutions verbally. For visual change-detection tasks, study items were visually presented to participants for 1,000ms before they disappeared. After a 4000ms retention interval, a probe item was presented and participants judged whether the probe item was the same as one of the memory items. For phonological change-detection tasks, phonological nonwords were verbally presented to participants sequentially. After a 4000ms retention interval, a probe nonword was presented to participants, and they indicated whether or not the probe was the same as one of the study non-words. Both numbers of carry operations involved in the arithmetic problems (zero, one, and two) and levels of visual/phonological loads (low, medium, and high) were manipulated in all experiments.   For all experiments, the effect of the number of carry operations on calculation performance was observed: arithmetic problems involving more carry operations were solved less rapidly and accurately. This effect was enlarged by concurrent visual and phonological loads, evidenced by significant interactions between task conditions and number of carry operations observed in the accuracy analyses of the arithmetic tasks in all experiments except Experiment 2, in which multiplication problems were solved under visual loads. These findings suggest that both visual and phonological resources are required for the temporary storage of intermediate solutions or carry information in mental addition, while for mental multiplication, only evidence for a role of phonological representations in carry operations was found.  For all experiments, the greater performance impairment of carry problems than no-carry problems associated with the presence of working memory loads was not further increased by increasing load level: There were no significant three-way interactions between task conditions, number of carry operations and load levels in accuracy analyses of arithmetic tasks. One possible explanation for this absence of significant three-way interactions might be attributable to some participants switching between phonological and visual working memory for the temporary storage of carrier information or intermediate solutions as a result of decreasing amount of available phonological or visual working memory resources.  In conclusion, the findings of the present research provide support for a role of both visual and phonological working memory resources in carry operations in mental addition, and a role of phonological working memory resources in carry operation in mental multiplication. Thus, it can be concluded that solving mental arithmetic problems involving carry-operations requires working memory resources. However, these results contradict the prediction of the Triple Code Model, which assumes addition mainly relies on visual processing, and multiplication mainly relies on verbal processing, while complex mental arithmetic is solved with the aid of visual processing regardless of the arithmetic operation. Thus, these results challenge the operation-specific involvement of working memory resources in complex mental arithmetic. However, it should be noted that the same arithmetic problems were solved three times by the same participants, which might have encouraged more activation in phonological processing than visual processing due to the practice effect.</p>


2021 ◽  
Author(s):  
Ethan Roy ◽  
Mathieu Guillaume ◽  
Amandine Van Rinsveld ◽  
Bruce McCandliss

Fluency in mental arithmetic is often regarded as a foundational math skill best measured as a single construct. Here we examine the potential benefits of distinguishing between inferential fluency and recognition fluency in elementary and middle school students. Depending on the problem at hand, a student’s fluency may reflect reliance on inferential versus recognition processes. Here we studied single digit arithmetic problems that appear in a widely used 3-minute math fluency assessment across a large (n=914), diverse cohort of 3rd- 7th grade students. A novel tablet-based paradigm enabled us to aggregate performance across different problem types by devising a simple yet objective heuristic to designate problems as likely to draw upon recognition versus inferential fluency in this population. Effects of fluency type were evident across accuracy, response time, and combined responses per minute (RPM) metrics. A novel yet theoretically informative interaction emerged between fluency type and the operation effect. Both fluency types showed sensitivity to grade effects, SES effects, and global achievement levels on state-mandated math assessments. Inferential fluency proved to be a stronger predictor of global achievement than either recognition fluency or more traditional aggregate raw scores. Finally, we demonstrate how differentiating these two fluency types provides novel insights into how relationships between SES and global math achievement are mediated by both inferential and recognition fluency, but not equally. We propose that differentiating inferential from recognition fluency is an initial step toward testing a proposed SIRPA (shift from inferential to recognition processes in arithmetic) model of math development.


Author(s):  
Kanar K. Shaker ◽  
Akram M. Al Mahdawi ◽  
Farqad B. Hamdan

Abstract Background Autonomic nervous system (ANS) symptoms are frequently present in people with epilepsy (PwE). They are generally more prominent when they originate from the temporal lobe. We aim to investigate the alterations of autonomic functions during the interictal period in patient with temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) using heart-based tests, blood pressure (BP)-based tests and sympathetic skin response (SSR). Forty-eight PwE with disease duration ranging from 2 to 15 years and 51 healthy individuals were studied. Long-term electroencephalography (EEG) monitoring, the heart rate variability (HRV) during normal breathing, deep breathing, Valsalva maneuver and standing, BP responses during standing, to isometric hand grip and to mental arithmetic, and the SSR was recorded for all participants. Results 31 patients with TLE and 17 with IGE showed lower RR-IV values during deep breathing, Valsalva maneuver and standing, but not during rest, impaired BP responses during standing, isometric hand grip, and mental arithmetic. Also, prolonged SSR latencies. Within PwE group, no difference was noticed between males and females, nor between the left and right temporal lobes. Conclusion Abnormal autonomic (sympathetic and parasympathetic) regulatory functions suggest that epilepsy may alter the autonomic function and this is not only in TLE but rather in IGE too. These autonomic changes are irrespective of the localization of epilepsy between the two hemispheres. The ANS changes in epileptic patients, particularly those with autonomic symptoms, confirm that electrophysiologic measures of autonomic function may be of value in preventing sudden unexpected death in epilepsy.


2021 ◽  
Vol 229 (4) ◽  
pp. 236-240
Author(s):  
Julia F. Huber ◽  
Christina Artemenko

Abstract. Human behavior depends on the interplay between cognition and emotion. Negative emotions like anxiety affect performance, particularly in complex tasks, by limiting cognitive resources – known as the anxiety–complexity effect. This study set out to replicate the anxiety–complexity effect in a web-based experiment. We investigated individual differences in math anxiety – a negative emotional response specific to math – and arithmetic performance ( N = 382). The mental arithmetic task consisted of a two-digit addition and subtraction, with/without carrying or borrowing, respectively. As expected and preregistered, higher math anxiety was related to poorer arithmetic performance, especially in complex tasks – indicating the anxiety–complexity effect. Consequently, the negative math anxiety-performance link is especially pronounced for complex arithmetic, which requires calculations across place-values and thus working memory resources. This successful replication of the anxiety–complexity effect suggests that math-anxious individuals have particular difficulties in complex arithmetic.


Sign in / Sign up

Export Citation Format

Share Document