Light Curve Modeling of Eclipsing Binary Stars

2018 ◽  
Author(s):  
Salvador Barquin

Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988±0.000001 d, amplitude of 0.34±0.02 V Mag, primary minimum epoch HJD 2457994.2756±0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.


2020 ◽  
Vol 498 (1) ◽  
pp. 332-343 ◽  
Author(s):  
P F L Maxted ◽  
Patrick Gaulme ◽  
D Graczyk ◽  
K G Hełminiak ◽  
C Johnston ◽  
...  

ABSTRACT Accurate masses and radii for normal stars derived from observations of detached eclipsing binary stars are of fundamental importance for testing stellar models and may be useful for calibrating free parameters in these model if the masses and radii are sufficiently precise and accurate. We aim to measure precise masses and radii for the stars in the bright eclipsing binary AI Phe, and to quantify the level of systematic error in these estimates. We use several different methods to model the Transiting Exoplanet Survey Satellite (TESS) light curve of AI Phe combined with spectroscopic orbits from multiple sources to estimate precisely the stellar masses and radii together with robust error estimates. We find that the agreement between different methods for the light-curve analysis is very good but some methods underestimate the errors on the model parameters. The semi-amplitudes of the spectroscopic orbits derived from spectra obtained with modern échelle spectrographs are consistent to within 0.1 per cent. The masses of the stars in AI Phe are $M_1 = 1.1938 \pm 0.0008\, \rm M_{\odot }$ and $M_2 = 1.2438 \pm 0.0008\, \rm M_{\odot }$, and the radii are $R_1 = 1.8050 \pm 0.0022\, \rm R_{\odot }$ and $R_2 = 2.9332 \pm 0.0023\, \rm R_{\odot }$. We conclude that it is possible to measure accurate masses and radii for stars in bright eclipsing binary stars to a precision of 0.2 per cent or better using photometry from TESS and spectroscopy obtained with modern échelle spectrographs. We provide recommendations for publishing masses and radii of eclipsing binary stars at this level of precision.


2013 ◽  
Vol 9 (S301) ◽  
pp. 413-414 ◽  
Author(s):  
Patrick Gaulme ◽  
Joyce A. Guzik

AbstractEclipsing binaries can in principle provide additional constraints to facilitate asteroseismology of one or more pulsating components. We have identified 94 possible eclipsing binary systems in a sample of over 1800 stars observed in long cadence as part of the Kepler Guest Observer Program to search for γ Doradus and δ Scuti star candidates. We show the results of a procedure to fold the light curve to identify the potential binary period, subtract a fit to the binary light curve, and perform a Fourier analysis on the residuals to search for pulsation frequencies that may arise in one or both of the stellar components. From this sample, we have found a large variety of light curve types; about a dozen stars show frequencies consistent with δ Sct or γ Dor pulsations, or light curve features possibly produced by stellar activity (rotating spots). For several stars, the folded candidate ‘binary’ light curve resembles more closely that of an RR Lyr, Cepheid, or high-amplitude δ Sct star. We show highlights of our results and discuss the potential for asteroseismology of the most interesting objects.


2006 ◽  
Vol 2 (S240) ◽  
pp. 624-627
Author(s):  
Hans Bruntt ◽  
John Southworth

AbstractWe have begun a programme to obtain high-precision photometry of bright detached eclipsing binary (dEB) stars with the Wide-field InfraRed Explorer (WIRE) satellite (Bruntt & Buzasi 2006). Due to the small aperture of WIRE, only stars brighter than V = 6 can be observed. We are collecting data for about a dozen dEB targets and here we present preliminary results for three of them. We have chosen dEBs with primary components of B and early A type. One of our aims is to combine the information from the light curve analyses of the eclipses with asteroseismic information from analysis of the pulsation of the primary component.


2017 ◽  
Vol 152 ◽  
pp. 03010
Author(s):  
Athanasios Papageorgiou ◽  
Georgios Kleftogiannis ◽  
Panagiota-Eleftheria Christopoulou

New Astronomy ◽  
2018 ◽  
Vol 59 ◽  
pp. 8-13 ◽  
Author(s):  
A. Shokry ◽  
S.M. Saad ◽  
M.A. Hamdy ◽  
M.M. Beheary ◽  
M.S. Abolazm ◽  
...  

2006 ◽  
Vol 2 (S239) ◽  
pp. 157-159
Author(s):  
John Southworth ◽  
Hans Bruntt

AbstractThe fundamental properties of detached eclipsing binary stars can be measured very accurately, which could make them important objects for constraining the treatment of convection in theoretical stellar models. However, only four or five pieces of information can be found for the average system, which is not enough. We discuss studies of more interesting and useful objects: eclipsing binaries in clusters and eclipsing binaries with pulsating components.


2005 ◽  
Vol 362 (3) ◽  
pp. 1006-1014 ◽  
Author(s):  
I. Todd ◽  
D. Pollacco ◽  
I. Skillen ◽  
D. M. Bramich ◽  
S. Bell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document