On the Optimal Order of Stations in Tandem Queues

Author(s):  
Michael Pinedo
Keyword(s):  
1974 ◽  
Vol 22 (4) ◽  
pp. 824-832 ◽  
Author(s):  
Shantanu V. Tembe ◽  
Ronald W. Wolff
Keyword(s):  

1988 ◽  
Vol 34 (4) ◽  
pp. 500-508 ◽  
Author(s):  
Betsy S. Greenberg ◽  
Ronald W. Wolff

2020 ◽  
Vol 26 ◽  
pp. 78
Author(s):  
Thirupathi Gudi ◽  
Ramesh Ch. Sau

We study an energy space-based approach for the Dirichlet boundary optimal control problem governed by the Laplace equation with control constraints. The optimality system results in a simplified Signorini type problem for control which is coupled with boundary value problems for state and costate variables. We propose a finite element based numerical method using the linear Lagrange finite element spaces with discrete control constraints at the Lagrange nodes. The analysis is presented in a combination for both the gradient and the L2 cost functional. A priori error estimates of optimal order in the energy norm is derived up to the regularity of the solution for both the cases. Theoretical results are illustrated by some numerical experiments.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas Jankuhn ◽  
Maxim A. Olshanskii ◽  
Arnold Reusken ◽  
Alexander Zhiliakov

AbstractThe paper studies a higher order unfitted finite element method for the Stokes system posed on a surface in ℝ3. The method employs parametric Pk-Pk−1 finite element pairs on tetrahedral bulk mesh to discretize the Stokes system on embedded surface. Stability and optimal order convergence results are proved. The proofs include a complete quantification of geometric errors stemming from approximate parametric representation of the surface. Numerical experiments include formal convergence studies and an example of the Kelvin--Helmholtz instability problem on the unit sphere.


Author(s):  
Sunil Kumar ◽  
Deepak Kumar ◽  
Janak Raj Sharma ◽  
Ioannis K. Argyros

Abstract Many optimal order multiple root techniques, which use derivatives in the algorithm, have been proposed in literature. Many researchers tried to construct an optimal family of derivative-free methods for multiple roots, but they did not get success in this direction. With this as a motivation factor, here, we present a new optimal class of derivative-free methods for obtaining multiple roots of nonlinear functions. This procedure involves Traub–Steffensen iteration in the first step and Traub–Steffensen-like iteration in the second step. Efficacy is checked on a good number of relevant numerical problems that verifies the efficient convergent nature of the new methods. Moreover, we find that the new derivative-free methods are just as competent as the other existing robust methods that use derivatives.


Sign in / Sign up

Export Citation Format

Share Document