Exact Solution for Simply Supported and Multilayered Magneto-Electro-Elastic Cylindrical Shells

Author(s):  
Zheng Zhong ◽  
Xu Wang
2000 ◽  
Vol 123 (3) ◽  
pp. 288-292 ◽  
Author(s):  
Arturs Kalnins ◽  
Dean P. Updike

Tresca limit pressures for long cylindrical shells and complete spherical shells subjected to arbitrary pressure, and several approximations to the exact limit pressures for limited pressure ranges, are derived. The results are compared with those in Section III-Subsection NB and in Section VIII-Division 2 of the ASME B&PV Code. It is found that in Section VIII-Division 2 the formulas agree with the derived limit pressures and their approximations, but that in Section III-Subsection NB the formula for spherical shells is different from the derived approximation to the limit pressure. The length effect on the limit pressure is investigated for cylindrical shells with simply supported ends. A geometric parameter that expresses the length effect is determined. A formula and its limit of validity are derived for an assessment of the length effect on the limit pressures.


Author(s):  
Muzammal Hussain ◽  
M Nawaz Naeem ◽  
Aamir Shahzad ◽  
Mao-Gang He ◽  
Siddra Habib

Fundamental natural frequencies of rotating functionally graded cylindrical shells have been calculated through the improved wave propagation approach using three different volume fraction laws. The governing shell equations are obtained from Love’s shell approximations using improved rotating terms and the new equations are obtained in standard eigenvalue problem with wave propagation approach and volume fraction laws. The effects of circumferential wave number, rotating speed, length-to-radius, and thickness-to-radius ratios have been computed with various combinations of axial wave numbers and volume fraction law exponent on the fundamental natural frequencies of nonrotating and rotating functionally graded cylindrical shells using wave propagation approach and volume fraction laws with simply supported edge. In this work, variation of material properties of functionally graded materials is controlled by three volume fraction laws. This process creates a variation in the results of shell frequency. MATLAB programming has been used to determine shell frequencies for traveling mode (backward and forward) rotating motions. New estimations show that the rotating forward and backward simply supported fundamental natural frequencies increases with an increase in circumferential wave number, for Type I and Type II of functionally graded cylindrical shells. The presented results of backward and forward simply supported fundamental natural frequencies corresponding to Law I are higher than Laws II and III for Type I and reverse effects are found for Type II, depending on rotating speed. Our investigations show that the decreasing and increasing behaviors are noted for rotating simply supported fundamental natural frequencies with increasing length-to-radius and thickness-to-radius ratios, respectively. It is found that the fundamental frequencies of the forward waves decrease with the increase in the rotating speed, and the fundamental frequencies of the backward waves increase with the increase in the rotating speed. This investigation has been made with three different volume fraction laws of polynomial (Law I), exponential (Law II), and trigonometric (Law III). The presented numerical results of nonrotating isotropic and rotating functionally graded simply supported are in fair agreement with parts of other earlier numerical results.


2019 ◽  
Vol 25 (18) ◽  
pp. 2494-2508 ◽  
Author(s):  
Ahmad Reza Ghasemi ◽  
Mohammad Meskini

In this research, investigations are presented of the free vibration of porous laminated rotating circular cylindrical shells based on Love’s shell theory with simply supported boundary conditions. The equilibrium equations for circular cylindrical shells are obtained using Hamilton’s principle. Also, Navier’s solution is used to solve the equations of the cylindrical shell due to the simply supported boundary conditions. The results are compared with previous results of other researchers. The numerical result of this study indicates that with increase of the porosity coefficient the nondimensional backward and forward frequency decreased. Then the results of the free vibration of rotating cylindrical shells are presented in terms of the effects of porous coefficients, porous type, length to radius ratio, rotating speed, and axial and circumferential wave numbers.


1991 ◽  
Vol 15 (2) ◽  
pp. 147-159
Author(s):  
J.L. Urrutia-Galicia ◽  
L.J. Arango

The fundamental frequencies and modes of free vibration of simply supported circular cylindrical shells are explored. The results include the fundamental frequencies ωmn and the modes (m,n) of steel cylindrical shells which are presented in the form of a nomogram, see Figure 6. Besides, single more general formulas are given for cylindrical shells made out of any elastic material which turn out to be very suitable for design and analysis purposes.


1990 ◽  
Vol 57 (2) ◽  
pp. 376-382 ◽  
Author(s):  
A. P. Christoforou ◽  
S. R. Swanson

An analytic solution is given for the problem of simply-supported orthotropic cylindrical shells subject to impact loading. The closed-form solution has not been obtained previously. The analysis is based on an expansion of the loads, displacements, and rotations in a double Fourier series which satisfies the end boundary conditions of simple support. Each expansion is assumed to be separable into a function of time and a function of position. By neglecting in-plane and rotary inertia the problem becomes a second-order ordinary differential equation in time for the Fourier coefficients of the radial deflection. For a given loading impulse the solution can be found by invoking the convolution integral. The results show that for impact by a heavy mass, the solution is equivalent to that obtained by an approximate procedure of neglecting the mass of the shell, which leads to a simple simple-degree-of-freedom analysis. For problems of impact by smaller masses, the higher response frequencies of the cylinder become important. The results show the importance of dynamic effects in the predicted impact duration, peak force, and peak deflection relative to the quasi-static response. The results show that the response amplitude varies linearly with the impact velocity, but the response characteristics depend on the mass of the impactor and the mass and stiffness of the cylinder.


Author(s):  
Lara Rodrigues ◽  
Paulo B. Gonçalves ◽  
Frederico M. A. Silva

This work investigates the influence of several modal geometric imperfections on the nonlinear vibration of simply-supported transversally excited cylindrical shells. The Donnell nonlinear shallow shell theory is used to study the nonlinear vibrations of the shell. A general expression for the transversal displacement is obtained by a perturbation procedure which identifies all modes that couple with the linear modes through the quadratic and cubic nonlinearities. The imperfection shape is described by the same modal expansion. So, a particular solution is selected which ensures the convergence of the response up to very large deflections. Substituting the obtained modal expansions into the equations of motions and applying the standard Galerkin method, a discrete system in time domain is obtained. Several numerical strategies are used to study the nonlinear behavior of the imperfect shell. Special attention is given to the influence of the form of the initial geometric imperfections on the natural frequencies, frequency-amplitude relation, resonance curves and bifurcations of simply-supported transversally excited cylindrical shells.


Sign in / Sign up

Export Citation Format

Share Document