Other mathematical programming methods for cell formation

1996 ◽  
pp. 154-180
Author(s):  
Nanua Singh ◽  
Divakar Rajamani
2015 ◽  
Vol 22 (2) ◽  
pp. 129 ◽  
Author(s):  
Ali Azadeh ◽  
Mohsen Moghaddam ◽  
Babak Nazari Doust ◽  
Fatemeh Jalalvand

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Reza Raminfar ◽  
Norzima Zulkifli ◽  
Mohammadreza Vasili

Cell formation (CF) is a crucial aspect in the design of cellular manufacturing (CM) systems. This paper develops a comprehensive mathematical programming model for the cell formation problem, where product demands, cell size limits, sequence of operations, multiple units of identical machines, machine capacity, or machine cost are all considered. In this model, the intercell moves are restricted to be unidirectional from one cell to the downstream cells, without backtracking. The proposed model is investigated through several numerical examples. To evaluate the solution quality of the proposed model, it is compared with some well-known cell formation methods from the literature, by using group capability index (GCI) as a performance measure. The results and comparisons indicate that the proposed model produces solution with a higher performance.


Author(s):  
S. Mahajan ◽  
M. R. Pinnel ◽  
J. E. Bennett

The microstructural changes in an Fe-Co-V alloy (composition by wt.%: 2.97 V, 48.70 Co, 47.34 Fe and balance impurities, such as C, P and Ni) resulting from different heat treatments have been evaluated by optical metallography and transmission electron microscopy. Results indicate that, on air cooling or quenching into iced-brine from the high temperature single phase ϒ (fcc) field, vanadium can be retained in a supersaturated solid solution (α2) which has bcc structure. For the range of cooling rates employed, a portion of the material appears to undergo the γ-α2 transformation massively and the remainder martensitically. Figure 1 shows dislocation topology in a region that may have transformed martensitically. Dislocations are homogeneously distributed throughout the matrix, and there is no evidence for cell formation. The majority of the dislocations project along the projections of <111> vectors onto the (111) plane, implying that they are predominantly of screw character.


Author(s):  
K. Florian Klemp ◽  
J.R. Guyton

The earliest distinctive lesions in human atherosclerosis are fatty streaks (FS), characterized initially by lipid-laden foam cell formation. Fibrous plaques (FP), the clinically significant lesions, differ from FS in several respects. In addition to foam cells, the FP also exhibit fibromuscular proliferation and a necrotic core region rich in extracellular lipid. The possible transition of FS into mature FP has long been debated, however. A subset of FS described by Katz etal., was intermediate in lipid composition between ordinary FS and FP. We investigated this hypothesis by electron microscopic cytochemistry by employing a tissue processing technique previously described by our laboratory. Osmium-tannic acid-paraphenylenediamine (OTAP) tissue preparation enabled ultrastructural analysis of lipid deposits to discern features characteristic of mature fibrous plaques.


Sign in / Sign up

Export Citation Format

Share Document