Resonant Absorption in Dense Cesium Plasma

1987 ◽  
pp. 565-569
Author(s):  
Jean Larour ◽  
Jean Rous ◽  
Maurice Skowronek
1994 ◽  
Vol 144 ◽  
pp. 503-505
Author(s):  
R. Erdélyi ◽  
M. Goossens ◽  
S. Poedts

AbstractThe stationary state of resonant absorption of linear, MHD waves in cylindrical magnetic flux tubes is studied in viscous, compressible MHD with a numerical code using finite element discretization. The full viscosity tensor with the five viscosity coefficients as given by Braginskii is included in the analysis. Our computations reproduce the absorption rates obtained by Lou in scalar viscous MHD and Goossens and Poedts in resistive MHD, which guarantee the numerical accuracy of the tensorial viscous MHD code.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-137-C7-138
Author(s):  
G. Musa ◽  
A. Popescu ◽  
N. Niculescu

Author(s):  
M. M. Glazov

This chapter is devoted to one of key phenomena in the field of spin physics, namely, resonant absorption of electromagnetic waves under conditions where the Zeeman splitting of spin levels in magnetic field is equal to photon energy. This method is particularly important for identification of nuclear spin effects, because resonance spectra provide fingerprints of different involved spin species and make it possible to distinguish different nuclear isotopes. As discussed in this chapter the nuclear magnetic resonance provides also an access to local magnetic fields acting on nuclear spins. These fields are caused by the magnetic interactions between the nuclei and by the quadrupole splittings of nuclear spin states in anisotropic crystalline environment. Manifestations of spin resonance in optical responses of semiconductors–that is, optically detected magnetic resonance–are discussed.


Solar Physics ◽  
2021 ◽  
Vol 296 (6) ◽  
Author(s):  
Michael S. Ruderman ◽  
Nikolai S. Petrukhin

AbstractWe study kink oscillations of a straight magnetic tube in the presence of siphon flows. The tube consists of a core and a transitional or boundary layer. The flow velocity is parallel to the tube axis, has constant magnitude, and confined in the tube core. The plasma density is constant in the tube core and it monotonically decreases in the transitional layer to its value in the surrounding plasma. We use the expression for the decrement/increment previously obtained by Ruderman and Petrukhin (Astron. Astrophys.631, A31, 2019) to study the damping and resonant instability of kink oscillations. We show that, depending on the magnitude of siphon-velocity, resonant absorption can cause either the damping of kink oscillations or their enhancement. There are two threshold velocities: When the flow velocity is below the first threshold velocity, kink oscillations damp. When the flow velocity is above the second threshold velocity, the kink oscillation amplitudes grow. Finally, when the flow velocity is between the two threshold velocities, the oscillation amplitudes do not change. We apply the theoretical result to kink oscillations of prominence threads. We show that, for particular values of thread parameters, resonant instability can excite these kink oscillations.


1993 ◽  
Vol 113 (1) ◽  
pp. 20-30 ◽  
Author(s):  
H. Tellier ◽  
M. Coste ◽  
C. Raepsaet ◽  
C. Van der Gucht

1972 ◽  
Vol 28 (19) ◽  
pp. 1254-1258 ◽  
Author(s):  
I. L. Klavan ◽  
D. M. Cox ◽  
H. H. Brown ◽  
B. Bederson

Sign in / Sign up

Export Citation Format

Share Document