Optical Storage of Digital Data on Video Discs for Distributing Engineering Data and Technical Documentation

1984 ◽  
pp. 170-173
Author(s):  
Jane N. Ryland
1974 ◽  
Vol 13 (4) ◽  
pp. 747 ◽  
Author(s):  
A. Kozma ◽  
E. S. Barrekette
Keyword(s):  

1973 ◽  
Vol 5 (5) ◽  
pp. 226
Author(s):  
B.M. Watrasiewicz
Keyword(s):  

Author(s):  
Ari Nordström

Topic-based technical documentation is all the rage these days, made popular by DITA and others. Topics can be integrated with the engineering data for the products both describe using nifty Product Life Management (PLM) tools that make this easier than ever. But what if you're stuck with SGML, voluntarily or involuntarily? Can you, too, bring your content into the topic-based paradigm or should you rather not? This paper explores your options and the state of SGML in the PLM world today. It nose-dives into the ATA iSpec 2200 SGML, discusses some of the pains to implement it, and finally converts the ATA to DITA.


Author(s):  
D. R. Denley

Scanning tunneling microscopy (STM) has recently been introduced as a promising tool for analyzing surface atomic structure. We have used STM for its extremely high resolution (especially the direction normal to surfaces) and its ability for imaging in ambient atmosphere. We have examined surfaces of metals, semiconductors, and molecules deposited on these materials to achieve atomic resolution in favorable cases.When the high resolution capability is coupled with digital data acquisition, it is simple to get quantitative information on surface texture. This is illustrated for the measurement of surface roughness of evaporated gold films as a function of deposition temperature and annealing time in Figure 1. These results show a clear trend for which the roughness, as well as the experimental deviance of the roughness is found to be minimal for evaporation at 300°C. It is also possible to contrast different measures of roughness.


Author(s):  
Stuart McKernan ◽  
C. Barry Carter

Convergent-beam electron diffraction (CBED) patterns contain an immense amount of information relating to the structure of the material from which they are obtained. The analysis of these patterns has progressed to the point that under appropriate, well specified conditions, the intensity variation within the CBED discs may be understood in a quantitative sense. Rossouw et al for example, have produced numerical simulations of zone-axis CBED patterns which show remarkable agreement with experimental patterns. Spence and co-workers have obtained the structure factor parameters for lowindex reflections using the intensity variation in 2-beam CBED patterns. Both of these examples involve the use of digital data. Perhaps the most frequent use for quantitative CBED analysis is the thickness determination described by Kelly et al. This analysis has been implemented in a variety of different ways; from real-time, in-situ analysis using the microscope controls, to measurements of photographic prints with a ruler, to automated processing of digitally acquired images. The potential advantages of this latter process will be presented.


Author(s):  
M. Pan

It has been known for many years that materials such as zeolites, polymers, and biological specimens have crystalline structures that are vulnerable to electron beam irradiation. This radiation damage severely restrains the use of high resolution electron microscopy (HREM). As a result, structural characterization of these materials using HREM techniques becomes difficult and challenging. The emergence of slow-scan CCD cameras in recent years has made it possible to record high resolution (∽2Å) structural images with low beam intensity before any apparent structural damage occurs. Among the many ideal properties of slow-scan CCD cameras, the low readout noise and digital recording allow for low-dose HREM to be carried out in an efficient and quantitative way. For example, the image quality (or resolution) can be readily evaluated on-line at the microscope and this information can then be used to optimize the operating conditions, thus ensuring that high quality images are recorded. Since slow-scan CCD cameras output (undistorted) digital data within the large dynamic range (103-104), they are ideal for quantitative electron diffraction and microscopy.


Author(s):  
D. Shindo

Imaging plate has good properties, i.e., a wide dynamic range and good linearity for the electron intensity. Thus the digital data (2048x1536 pixels, 4096 gray levels in log scale) obtained with the imaging plate can be used for quantification in electron microscopy. By using the image processing system (PIXsysTEM) combined with a main frame (ACOS3900), quantitative analysis of electron diffraction patterns and high-resolution electron microscope (HREM) images has been successfully carried out.In the analysis of HREM images observed with the imaging plate, quantitative comparison between observed intensity and calculated intensity can be carried out by taking into account the experimental parameters such as crystal thickness and defocus value. An example of HREM images of quenched Tl2Ba2Cu1Oy (Tc = 70K) observed with the imaging plate is shown in Figs. 1(b) - (d) comparing with a structure model proposed by x-ray diffraction study of Fig. 1 (a). The image was observed with a JEM-4000EX electron microscope (Cs =1.0 mm).


Sign in / Sign up

Export Citation Format

Share Document