Drawing Trees, Outerplanar Graphs, Series-Parallel Graphs, and Planar Graphs in a Small Area

Author(s):  
Giuseppe Di Battista ◽  
Fabrizio Frati
2011 ◽  
Vol 37 ◽  
pp. 123-128 ◽  
Author(s):  
Pascal Ochem ◽  
Alexandre Pinlou

10.37236/1810 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
J. A. Grytczuk ◽  
M. Hałuszczak ◽  
H. A. Kierstead

The Ramsey game we consider in this paper is played on an unbounded set of vertices by two players, called Builder and Painter. In one move Builder introduces a new edge and Painter paints it red or blue. The goal of Builder is to force Painter to create a monochromatic copy of a fixed target graph $H$, keeping the constructed graph in a prescribed class ${\cal G}$. The main problem is to recognize the winner for a given pair $H,{\cal G}$. In particular, we prove that Builder has a winning strategy for any $k$-colorable graph $H$ in the game played on $k$-colorable graphs. Another class of graphs with this strange self-unavoidability property is the class of forests. We show that the class of outerplanar graphs does not have this property. The question of whether planar graphs are self-unavoidable is left open. We also consider a multicolor version of Ramsey on-line game. To extend our main result for $3$-colorable graphs we introduce another Ramsey type game, which seems interesting in its own right.


2008 ◽  
Vol Vol. 10 no. 1 ◽  
Author(s):  
Mickael Montassier ◽  
Pascal Ochem ◽  
Alexandre Pinlou

International audience Let M be an additive abelian group. An M-strong-oriented coloring of an oriented graph G is a mapping f from V(G) to M such that f(u) <> j(v) whenever uv is an arc in G and f(v)−f(u) <> −(f(t)−f(z)) whenever uv and zt are two arcs in G. The strong oriented chromatic number of an oriented graph is the minimal order of a group M such that G has an M-strong-oriented coloring. This notion was introduced by Nesetril and Raspaud [Ann. Inst. Fourier, 49(3):1037-1056, 1999]. We prove that the strong oriented chromatic number of oriented planar graphs without cycles of lengths 4 to 12 (resp. 4 or 6) is at most 7 (resp. 19). Moreover, for all i ≥ 4, we construct outerplanar graphs without cycles of lengths 4 to i whose oriented chromatic number is 7.


2008 ◽  
Vol Vol. 10 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Gruia Călinescu ◽  
Cristina G. Fernandes

Graphs and Algorithms International audience A planar k-restricted structure is a simple graph whose blocks are planar and each has at most k vertices. Planar k-restricted structures are used by approximation algorithms for Maximum Weight Planar Subgraph, which motivates this work. The planar k-restricted ratio is the infimum, over simple planar graphs H, of the ratio of the number of edges in a maximum k-restricted structure subgraph of H to the number edges of H. We prove that, as k tends to infinity, the planar k-restricted ratio tends to 1 = 2. The same result holds for the weighted version. Our results are based on analyzing the analogous ratios for outerplanar and weighted outerplanar graphs. Here both ratios tend to 1 as k goes to infinity, and we provide good estimates of the rates of convergence, showing that they differ in the weighted from the unweighted case.


2007 ◽  
Vol 44 (3) ◽  
pp. 411-422 ◽  
Author(s):  
János Barát ◽  
Péter Varjú

A sequence of symbols a1 , a2 … is called square-free if it does not contain a subsequence of consecutive terms of the form x1 , …, xm , x1 , …, xm . A century ago Thue showed that there exist arbitrarily long square-free sequences using only three symbols. Sequences can be thought of as colors on the vertices of a path. Following the paper of Alon, Grytczuk, Hałuszczak and Riordan, we examine graph colorings for which the color sequence is square-free on any path. The main result is that the vertices of any k -tree have a coloring of this kind using O ( ck ) colors if c > 6. Alon et al. conjectured that a fixed number of colors suffices for any planar graph. We support this conjecture by showing that this number is at most 12 for outerplanar graphs. On the other hand we prove that some outerplanar graphs require at least 7 colors. Using this latter we construct planar graphs, for which at least 10 colors are necessary.


2016 ◽  
Vol 15 (3) ◽  
pp. 1-8
Author(s):  
H P Patil

The purpose of this paper is to obtain a characterization of $k$-trees in terms of $k$-connectivity and forbidden subgraphs. Also, we present the other characterizations of $k$-trees containing the full vertices by using the join operation. Further, we establish the property of $k$-trees dealing with the degrees and formulate the Helly-property for a family of nontrivial $k$-paths in a $k$-tree. We study the planarity of $k$-trees and express the maximal outerplanar graphs in terms of 2-trees and $K_2$-neighbourhoods. Finally, the similar type of results for the maximal planar graphs are obtained.


10.37236/9938 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Reza Naserasr ◽  
Zhouningxin Wang ◽  
Xuding Zhu

A signed graph is a pair $(G, \sigma)$, where $G$ is a graph (loops and multi edges allowed) and $\sigma: E(G) \to \{+, -\}$ is a signature which assigns to each edge of $G$ a sign. Various notions of coloring of signed graphs have been studied. In this paper, we extend circular coloring of graphs to signed graphs. Given a signed graph $(G, \sigma)$ with no positive loop, a circular $r$-coloring of $(G, \sigma)$ is an assignment $\psi$ of points of a circle of circumference $r$ to the vertices of $G$ such that for every edge $e=uv$ of $G$, if $\sigma(e)=+$, then $\psi(u)$ and $\psi(v)$ have distance at least $1$, and if $\sigma(e)=-$, then $\psi(v)$ and the antipodal of $\psi(u)$ have distance at least $1$. The circular chromatic number $\chi_c(G, \sigma)$ of a signed graph $(G, \sigma)$ is the infimum of those $r$ for which $(G, \sigma)$ admits a circular $r$-coloring. For a graph $G$, we define the signed circular chromatic number of $G$ to be $\max\{\chi_c(G, \sigma): \sigma \text{ is a signature of $G$}\}$.  We study basic properties of circular coloring of signed graphs and develop tools for calculating $\chi_c(G, \sigma)$. We explore the relation between the circular chromatic number and the signed circular chromatic number of graphs, and present bounds for the signed circular chromatic number of some families of graphs. In particular,  we determine the supremum of the signed circular chromatic number of $k$-chromatic graphs of large girth, of simple bipartite planar graphs, $d$-degenerate graphs, simple outerplanar graphs and series-parallel graphs. We construct a signed planar simple graph whose circular chromatic number is $4+\frac{2}{3}$. This is based and improves on a signed graph built by Kardos and Narboni as a counterexample to a conjecture of Máčajová, Raspaud, and Škoviera. 


2007 ◽  
Vol 17 (02) ◽  
pp. 139-160 ◽  
Author(s):  
EMILIO DI GIACOMO ◽  
GIUSEPPE LIOTTA

Let G1 and G2 be two planar graphs having some vertices in common. A simultaneous embedding of G1 and G2 is a pair of crossing-free drawings of G1 and G2 such that each vertex in common is represented by the same point in both drawings. In this paper we show that an outerplanar graph and a simple path can be simultaneously embedded with fixed edges such that the edges in common are straight-line segments while the other edges of the outerplanar graph can have at most one bend per edge. We then exploit the technique for outerplanar graphs and paths to study simultaneous embeddings of other pairs of graphs. Namely, we study simultaneous embedding with fixed edges of: (i) two outerplanar graphs sharing a forest of paths and (ii) an outerplanar graph and a cycle.


Sign in / Sign up

Export Citation Format

Share Document