Threshold Dynamics of Scalar Linear Periodic Delay-Differential Equations

Author(s):  
Yuming Chen ◽  
Jianhong Wu
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Gang Jin ◽  
Houjun Qi ◽  
Zhanjie Li ◽  
Jianxin Han ◽  
Hua Li

Delay differential equations (DDEs) are widely utilized as the mathematical models in engineering fields. In this paper, a method is proposed to analyze the stability characteristics of periodic DDEs with multiple time-periodic delays. Stability charts are produced for two typical examples of time-periodic DDEs about milling chatter, including the variable-spindle speed milling system with one-time-periodic delay and variable pitch cutter milling system with multiple delays. The simulations show that the results gained by the proposed method are in close agreement with those existing in the past literature. This indicates the effectiveness of our method in terms of time-periodic DDEs with multiple time-periodic delays. Moreover, for milling processes, the proposed method further provides a generalized algorithm, which possesses a good capability to predict the stability lobes for milling operations with variable pitch cutter or variable-spindle speed.


Author(s):  
Firas A. Khasawneh ◽  
Brian P. Mann ◽  
Bhavin Patel

This paper describes a new approach to examine the stability of delay differential equations that builds upon prior work using temporal finite element analysis. In contrast to previous analyses, which could only be applied to second order delay differential equations, the present manuscript develops an approach which can be applied to a broader class of systems — systems that may be written in the form of a state space model. A primary outcome from this work is a generalized framework to investigate the asymptotic stability of autonomous delay differential equations with a single time delay. Furthermore, this approach is shown to be applicable to time-periodic delay differential equations and equations that are piecewise continuous.


2010 ◽  
Vol 16 (7-8) ◽  
pp. 1067-1085 ◽  
Author(s):  
B.P. Mann ◽  
B.R. Patel

In this paper we describe a new approach to examine the stability of delay differential equations that builds upon prior work using temporal finite element analysis. In contrast to previous analyses, which could only be applied to second-order delay differential equations, the present manuscript develops an approach which can be applied to a broader class of systems: systems that may be written in the form of a state space model. A primary outcome from this work is a generalized framework to investigate the asymptotic stability of autonomous delay differential equations with a single time delay. Furthermore, this approach is shown to be applicable to time-periodic delay differential equations and equations that are piecewise continuous.


Sign in / Sign up

Export Citation Format

Share Document