An Improved Method Research of SAR Images Thresholding Segmentation

Author(s):  
Hongyu Zhao ◽  
Qingping Wang ◽  
Weiwei Wu ◽  
Naichang Yuan
Keyword(s):  
Author(s):  
G. Zhou ◽  
C. He ◽  
T. Yue ◽  
W. Huang ◽  
Y. Huang ◽  
...  

In order to take full advantage of SAR images, it is necessary to obtain the high precision location of the image. During the geometric correction process of images, to ensure the accuracy of image geometric correction and extract the effective mapping information from the images, precise image geolocation is important. This paper presents an improved analytical geolocation method (IAGM) that determine the high precision geolocation of each pixel in a digital SAR image. This method is based on analytical geolocation method (AGM) proposed by X. K. Yuan aiming at realizing the solution of RD model. Tests will be conducted using RADARSAT-2 SAR image. Comparing the predicted feature geolocation with the position as determined by high precision orthophoto, results indicate an accuracy of 50m is attainable with this method. Error sources will be analyzed and some recommendations about improving image location accuracy in future spaceborne SAR's will be given.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7785
Author(s):  
Maciej Dwornik ◽  
Stanisława Porzycka-Strzelczyk ◽  
Jacek Strzelczyk ◽  
Hubert Malik ◽  
Radosław Murdzek ◽  
...  

In this paper, an automatic algorithm for the detection of subsidence areas in SAR interferograms is proposed. It is based on the analysis of spatial distribution of the interferogram phase, and its coherence and entropy. The developed method was tested for differential interferograms generated on the basis of Sentinel-1 SAR images covering mining areas in South Poland. The obtained results were compared with those achieved using a method based on circular Gabor filters. Performed analysis revealed that the detection rate for the proposed method varied from 34% to 83%. It is an improved method based on Gabor filters that achieved a detection rate from 30% to 53%.


2009 ◽  
Author(s):  
Liping Zhang ◽  
Hong Zhang ◽  
Chao Wang ◽  
Bo Zhang

Author(s):  
E.A. Fischione ◽  
P.E. Fischione ◽  
J.J. Haugh ◽  
M.G. Burke

A common requirement for both Atom Probe Field-Ion Microscopy (APFIM) and Scanning Tunnelling Microscopy (STM) is a sharp pointed tip for use as either the specimen (APFIM) or the probe (STM). Traditionally, tips have been prepared by either chemical or electropolishing techniques. Recently, ion-milling has been successfully employed in the production of APFIM tips [1]. Conventional electropolishing techniques are applicable to a wide variety of metals, but generally require careful manual adjustments during the polishing process and may also be time-consuming. In order to reduce the time and effort involved in the preparation process, a compact, self-contained polishing unit has been developed. This system is based upon the conventional two-stage electropolishing technique in which the specimen/tip blank is first locally thinned or “necked”, and subsequently electropolished until separation occurs.[2,3] The result of this process is the production of two APFIM or STM tips. A mechanized polishing unit that provides these functions while automatically maintaining alignment has been designed and developed.


Author(s):  
J. C. Fanning ◽  
J. F. White ◽  
R. Polewski ◽  
E. G. Cleary

Elastic tissue is an important component of the walls of arteries and veins, of skin, of the lungs and in lesser amounts, of many other tissues. It is responsible for the rubber-like properties of the arteries and for the normal texture of young skin. It undergoes changes in a number of important diseases such as atherosclerosis and emphysema and on exposure of skin to sunlight.We have recently described methods for the localizationof elastic tissue components in normal animal and human tissues. In the study of developing and diseased tissues it is often not possible to obtain samples which have been optimally prepared for immuno-electron microscopy. Sometimes there is also a need to examine retrospectively samples collected some years previously. We have therefore developed modifications to our published methods to allow examination of human and animal tissue samples obtained at surgery or during post mortem which have subsequently been: 1. stored frozen at -35° or -70°C for biochemical examination; 2.


1895 ◽  
Vol 39 (1003supp) ◽  
pp. 16026-16027
Author(s):  
John Vansant
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document