Author(s):  
Hanan Haj AHmad ◽  
Ehab Almetwally

A new generalization of generalized Pareto Distribution is obtained using the generator Marshall-Olkin distribution (1997). The new distribution MOGP is more flexible and can be used to model non-monotonic failure rate functions. MOGP includes six different sub models: Generalized Pareto, Exponential, Uniform, Pareto type I, Marshall-Olkin Pareto and Marshall-Olkin exponential distribution. We consider different estimation procedures for estimating the model parameters, namely: Maximum likelihood estimator, Maximum product spacing, Least square method, weighted least square method and Bayesian Method. The Bayesian Method is considered under quadratic loss function and Linex loss function. Simulation analysis using MCMC technique is performed to compare between the proposed point estimation methods. The usefulness of MOGP is illustrated by means of real data set, which shows that this generalization is better fit than Pareto, GP and MOP distributions.


2020 ◽  
Vol 72 (2) ◽  
pp. 89-110
Author(s):  
Manoj Chacko ◽  
Shiny Mathew

In this article, the estimation of [Formula: see text] is considered when [Formula: see text] and [Formula: see text] are two independent generalized Pareto distributions. The maximum likelihood estimators and Bayes estimators of [Formula: see text] are obtained based on record values. The Asymptotic distributions are also obtained together with the corresponding confidence interval of [Formula: see text]. AMS 2000 subject classification: 90B25


2017 ◽  
Vol 6 (3) ◽  
pp. 141 ◽  
Author(s):  
Thiago A. N. De Andrade ◽  
Luz Milena Zea Fernandez ◽  
Frank Gomes-Silva ◽  
Gauss M. Cordeiro

We study a three-parameter model named the gamma generalized Pareto distribution. This distribution extends the generalized Pareto model, which has many applications in areas such as insurance, reliability, finance and many others. We derive some of its characterizations and mathematical properties including explicit expressions for the density and quantile functions, ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating function, R\'enyi entropy and order statistics. We discuss the estimation of the model parameters by maximum likelihood. A small Monte Carlo simulation study and two applications to real data are presented. We hope that this distribution may be useful for modeling survival and reliability data.


Sign in / Sign up

Export Citation Format

Share Document