Wheat Catalase Expressed in Transgenic Rice Plants Can Improve Tolerance Against Low Temperature Injury

2002 ◽  
pp. 277-287
Author(s):  
Takeshi Matsumuraa ◽  
Noriko Tabayashib ◽  
Yasuyo Kamagata ◽  
Chihiro Souma ◽  
Haruo Saruyama
2021 ◽  
Vol 12 ◽  
Author(s):  
Mi Young Byun ◽  
Li Hua Cui ◽  
Andosung Lee ◽  
Hyung Geun Oh ◽  
Yo-Han Yoo ◽  
...  

The Antarctic flowering plant Deschampsia antarctica is highly sensitive to climate change and has shown rapid population increases during regional warming of the Antarctic Peninsula. Several studies have examined the physiological and biochemical changes related to environmental stress tolerance that allow D. antarctica to colonize harsh Antarctic environments; however, the molecular mechanisms of its responses to environmental changes remain poorly understood. To elucidate the survival strategies of D. antarctica in Antarctic environments, we investigated the functions of actin depolymerizing factor (ADF) in this species. We identified eight ADF genes in the transcriptome that were clustered into five subgroups by phylogenetic analysis. DaADF3, which belongs to a monocot-specific clade together with cold-responsive ADF in wheat, showed significant transcriptional induction in response to dehydration and cold, as well as under Antarctic field conditions. Multiple drought and low-temperature responsive elements were identified as possible binding sites of C-repeat-binding factors in the promoter region of DaADF3, indicating a close relationship between DaADF3 transcription control and abiotic stress responses. To investigate the functions of DaADF3 related to abiotic stresses in vivo, we generated transgenic rice plants overexpressing DaADF3. These transgenic plants showed greater tolerance to low-temperature stress than the wild-type in terms of survival rate, leaf chlorophyll content, and electrolyte leakage, accompanied by changes in actin filament organization in the root tips. Together, our results imply that DaADF3 played an important role in the enhancement of cold tolerance in transgenic rice plants and in the adaptation of D. antarctica to its extreme environment.


2014 ◽  
Vol 40 (7) ◽  
pp. 1190
Author(s):  
Yun-Peng WANG ◽  
Jing-Yong MA ◽  
Rui MA ◽  
Jian MA ◽  
Wen-Guo LIU

2009 ◽  
Vol 59 (3) ◽  
pp. 237-243 ◽  
Author(s):  
Hisato Katayama ◽  
Mari Mori ◽  
Yoko Kawamura ◽  
Toshinori Tanaka ◽  
Masashi Mori ◽  
...  

2013 ◽  
Vol 8 (16) ◽  
pp. 1520-1527 ◽  
Author(s):  
Hu Tingzhang ◽  
Yang Junnian ◽  
Wu Xiaoli ◽  
Huang Xiaoyun ◽  
Chen Zaigang ◽  
...  

2021 ◽  
Author(s):  
Weiwei Gao ◽  
Mingkang Li ◽  
Songguang Yang ◽  
Chunzhi Gao ◽  
Yan Su ◽  
...  

AbstractInduced abscisic acid (ABA) biosynthesis plays an important role in plant tolerance to abiotic stresses, including drought, cold and salinity. However, regulation pathway of the ABA biosynthesis in response to stresses is unclear. Here, we identified a rice miRNA, osa-miR2105 (miR2105), which plays a crucial role in ABA biosynthesis under drought stress. Analysis of expression, transgenic rice and cleavage site showed that OsbZIP86 is a target gene of miR2105. Subcellular localization and luciferase activity assays showed that OsbZIP86 is a nuclear transcription factor. In vivo and in vitro analyses showed that OsbZIP86 directly binds to the promoter of OsNCED3, and interacts with OsSAPK10, resulting in enhanced-expression of OsNCED3. Transgenic rice plants with knock-down of miR2105 or overexpression of OsbZIP86 showed higher ABA content, more tolerance to drought, a lower rate of water loss, more stomatal closure than wild type rice ZH11 under drought stress. These rice plants showed no penalty with respect to agronomic traits under normal conditions. By contrast, transgenic rice plants with miR2105 overexpression, OsbZIP86 downregulation, or OsbZIP86 knockout displayed less tolerance to drought stress and other phenotypes. Collectively, our results show that a regulatory network of ‘miR2105-OsSAPK10/OsbZIP86-OsNCED3’ control ABA biosynthesis in response to drought stress.One-sentence summary‘miR2105-OsbZIP86-OsNCED3’ module plays crucial role in mediating ABA biosynthesis to contribute to drought tolerance with no penalty with respect to agronomic traits under normal conditions.


Sign in / Sign up

Export Citation Format

Share Document