aba biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 86)

H-INDEX

27
(FIVE YEARS 6)

Development ◽  
2022 ◽  
Author(s):  
Vishnu Mishra ◽  
Archita Singh ◽  
Nidhi Gandhi ◽  
Shabari Sarkar Das ◽  
Sandeep Yadav ◽  
...  

Submergence-induced hypoxic condition negatively affects the plant growth and development, and causes early onset of senescence. Hypoxia alters the expression of a number of microRNAs (miRNAs). However, the molecular function of submergence stress-induced miRNAs in physiological or developmental changes and recovery remains poorly understood. Here we show that miR775 is an Arabidopsis thaliana-specific young and unique miRNA that possibly evolved non-canonically. miR775 post-transcriptionally regulates Galactosyltransferase (GALT9) and their expression is inversely affected at 24 hours of complete submergence stress. The overexpression of miR775 (miR775-Oe) confers enhanced recovery from submergence stress and reduced accumulation of RBOHD and ROS, in contrast to wild type and MIM775 Arabidopsis shoot. A similar recovery phenotype of galt9 mutant indicates the role of miR775-GALT9 module in post-submergence recovery. We predicted Golgi-localized GALT9 to be potentially involved in protein glycosylation. The altered expression of senescence-associated genes (SAG12, SAG29, and ORE1), ethylene signalling (EIN2 and EIN3) and ABA biosynthesis (NCED3) pathway genes in miR775-Oe, galt9 and MIM775 plants. Thus, our results indicate the role of miR775-GALT9 module in post-submergence recovery through a crosstalk with ethylene and ABA pathway.


Author(s):  
Elia Carraro ◽  
Antonino Di Iorio

AbstractDrought is the main abiotic stress that negatively affects the crop yield. Due to the rapid climate change, actual plant defence mechanisms may be less effective against increased drought stress and other related or co-occurring abiotic stresses such as salt and high temperature. Thus, genetic engineering approaches may be an important tool for improving drought tolerance in crops. This mini-review focuses on the responses to drought stress of the woody crop species Olea europaea and Citrus sp., selecting in particular five main strategies adopted by plants in response to drought stress: aquaporin (AQPs) expression, antioxidant activity, ABA signalling, and trehalose and proline accumulation. Transgenic studies on both the herbaceous Arabidopsis and woody Populus plant models showed an improvement in drought resistance with increasing expression of these drought-inducible genes. Outcomes from the present study suggest the overexpression of the gene families associated with AQPs and ABA biosynthesis, mainly involved in regulating water transport and in preventing water loss, respectively, as candidate targets for improving drought resistance; antioxidants-, trehalose- and proline-related genes remain valid candidates for resistance to a wider spectrum of abiotic stressors, including drought. However, the contribution of an increased stiffness of the modulus elasticity of leaf parenchyma cell walls to the rapid recovery of leaf water potential, delaying by this way the stress onset, is not a secondary aspect of the transgenic optimization, in particular for Olea cultivars.


2021 ◽  
Author(s):  
Xiaolong Liu ◽  
Ping Ji ◽  
Hongtao Yang ◽  
Changjie Jiang ◽  
Zhengwei Liang ◽  
...  

Abstract Heat stress is a major restrictive factor that suppresses rice production. In this study, we investigated the potential priming effect of exogenous abscisic acid (ABA) on heat tolerance in rice seedlings. Seedlings were pretreated with 10 μM ABA by root drenching for 24 h and then subjected to heat stress conditions of 40 °C day/35 °C night. ABA pretreatment significantly decreased leaf withering by 2.5– 28.5% and chlorophyll loss by 12.8–35.1% induced by heat stress in rice seedlings. ABA application also mitigated cell injury, as shown by lower malondialdehyde (MDA) content, membrane injury and expression of cell death-related genes OsKOD1 , OsCP1 and OsNAC4 , while expression of OsBI1 , a cell death-suppressor gene, was upregulated by ABA pretreatment. Moreover, ABA pretreatment improved antioxidant defense capacity, as shown by an obvious upregulation of ROS-scavenging genes and a decrease in ROS content (O 2 – and H 2 O 2 ) and downregulation of the OsRbohs gene. The application of fluridone, an ABA biosynthesis inhibitor, increased membrane injury and the accumulation of ROS under heat stress. Exogenous potent antioxidants (proanthocyanidins, PC) significantly alleviated leaf withering by decreasing ROS overaccumulation and membrane injury induced by heat stress. In addition, ABA pretreatment significantly superinduced the expression of ABA-responsive genes SalT and OsWsi18 , the ABA biosynthesis genes OsNCED3 and OsNCED4 , and the heat shock-related genes OsHSP23.7 , OsHSP17.7 , OsHSF7 and OsHsfA2a . Taken together, these results suggest that exogenous ABA has a potential priming effect for enhancing heat stress tolerance of rice seedlings mainly by improving antioxidant defense capacity and heat shock-related genes.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2437
Author(s):  
Yiru Wang ◽  
Junli Zhang ◽  
Minghao Sun ◽  
Cheng He ◽  
Ke Yu ◽  
...  

Maize vivipary, precocious seed germination on the ear, affects yield and seed quality. The application of multi-omics approaches, such as transcriptomics or metabolomics, to classic vivipary mutants can potentially reveal the underlying mechanism. Seven maize vivipary mutants were selected for transcriptomic and metabolomic analyses. A suite of transporters and transcription factors were found to be upregulated in all mutants, indicating that their functions are required during seed germination. Moreover, vivipary mutants exhibited a uniform expression pattern of genes related to abscisic acid (ABA) biosynthesis, gibberellin (GA) biosynthesis, and ABA core signaling. NCED4 (Zm00001d007876), which is involved in ABA biosynthesis, was markedly downregulated and GA3ox (Zm00001d039634) was upregulated in all vivipary mutants, indicating antagonism between these two phytohormones. The ABA core signaling components (PYL-ABI1-SnRK2-ABI3) were affected in most of the mutants, but the expression of these genes was not significantly different between the vp8 mutant and wild-type seeds. Metabolomics analysis integrated with co-expression network analysis identified unique metabolites, their corresponding pathways, and the gene networks affected by each individual mutation. Collectively, our multi-omics analyses characterized the transcriptional and metabolic landscape during vivipary, providing a valuable resource for improving seed quality.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Cheng Chi ◽  
Xuechen Xu ◽  
Mengqi Wang ◽  
Hui Zhang ◽  
Pingping Fang ◽  
...  

AbstractStrigolactones are carotenoid-derived phytohormones that impact plant growth and development in diverse ways. However, the roles of strigolactones in the responses to temperature stresses are largely unknown. Here, we demonstrated that strigolactone biosynthesis is induced in tomato (Solanum lycopersicum) by heat and cold stresses. Compromised strigolactone biosynthesis or signaling negatively affected heat and cold tolerance, while application of the synthetic strigolactone analog GR245DS enhanced heat and cold tolerance. Strigolactone-mediated heat and cold tolerance was associated with the induction of abscisic acid (ABA), heat shock protein 70 (HSP70) accumulation, C-REPEAT BINDING FACTOR 1 (CBF1) transcription, and antioxidant enzyme activity. Importantly, a deficiency in ABA biosynthesis compromised the GR245DS effects on heat and cold stresses and abolished the GR245DS-induced transcription of HSP70, CBF1, and antioxidant-related genes. These results support that strigolactones positively regulate tomato heat and cold tolerance and that they do so at least partially by the induction of CBFs and HSPs and the antioxidant response in an ABA-dependent manner.


2021 ◽  
Author(s):  
Deyue Yang ◽  
Fengli Zhao ◽  
Danling Zhu ◽  
Xi Chen ◽  
Xiangxiong Kong ◽  
...  

Seed germination represents a major developmental switch in plants that is vital to agricultural, but how this process is controlled at the chromatin level remains obscure. Here we demonstrate that successful germination in Arabidopsis requires a chromatin mechanism that progressively silences NCED6, which encodes a rate-limiting enzyme for abscisic acid (ABA) biosynthesis, through the cooperative action of the RNA-binding protein RZ-1 and the polycomb repressive complex 2 (PRC2). Simultaneous inactivation of RZ-1 and PRC2 blocks germination and synergistically derepresses NCEDs and hundreds of genes. At NCED6, by promoting H3 deacetylation and suppressing H3K4me3, RZ-1 facilitates transcriptional silencing and also a H3K27me3 accumulation process that occurs during seed germination and early seedling growth. Genome-wide analysis reveals RZ-1 is preferentially required for transcriptional silencing of many PRC2 targets early during seed germination when H3K27me3 is not yet established. We propose RZ-1 confers a novel silencing mechanism to compensate and coordinate with PRC2. Our work highlights the progressive chromatin silencing of ABA biosynthesis genes via synergized action of the RNA-binding protein RZ1 and PRC2, which is vital for seed germination.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qin Hu ◽  
Chuanwei Ao ◽  
Xiaorui Wang ◽  
Yanfei Wu ◽  
Xuezhu Du

Abstract Background Drought stress has great negative effects on the plant growth and development. The tolerance of plants to such abiotic stress is triggered by complicated and multilayered signaling pathways to restore cellular homeostasis and to promote survival. The WRKY family is one of the largest transcription factor families in higher plants, and has been well recognized for the roles in regulating plants tolerance to abiotic and biotic stress. However, little is known about how the WRKY genes regulate drought resistance in cotton. Results In this work, we identified the WRKY transcription factor GhWRKY1-like from upland cotton as a positive regulator of tolerance to drought that directly manipulates abscisic acid (ABA) biosynthesis. Overexpression of GhWRKY1-like in Arabidopsis constitutively activated ABA biosynthesis genes, signaling genes, responsive genes and drought related maker genes, and led to enhanced tolerance to drought. Further analysis has shown that GhWRKY1-like can interact with “W-box” cis-elements of the promoters of AtNCED2, AtNCED5, AtNCED6 and AtNCED9 which are essential enzymes for ABA biosynthesis, and promotes the expression of those target genes. Conclusions In summary, our findings suggest that GhWRKY1-like may act as a positive regulator in Arabidopsis tolerance to drought via directly interacting with the promoters of AtNCED2, AtNCED5, AtNCED6 and AtNCED9 to promote ABA biosynthesis.


2021 ◽  
Author(s):  
Weiwei Gao ◽  
Mingkang Li ◽  
Songguang Yang ◽  
Chunzhi Gao ◽  
Yan Su ◽  
...  

AbstractInduced abscisic acid (ABA) biosynthesis plays an important role in plant tolerance to abiotic stresses, including drought, cold and salinity. However, regulation pathway of the ABA biosynthesis in response to stresses is unclear. Here, we identified a rice miRNA, osa-miR2105 (miR2105), which plays a crucial role in ABA biosynthesis under drought stress. Analysis of expression, transgenic rice and cleavage site showed that OsbZIP86 is a target gene of miR2105. Subcellular localization and luciferase activity assays showed that OsbZIP86 is a nuclear transcription factor. In vivo and in vitro analyses showed that OsbZIP86 directly binds to the promoter of OsNCED3, and interacts with OsSAPK10, resulting in enhanced-expression of OsNCED3. Transgenic rice plants with knock-down of miR2105 or overexpression of OsbZIP86 showed higher ABA content, more tolerance to drought, a lower rate of water loss, more stomatal closure than wild type rice ZH11 under drought stress. These rice plants showed no penalty with respect to agronomic traits under normal conditions. By contrast, transgenic rice plants with miR2105 overexpression, OsbZIP86 downregulation, or OsbZIP86 knockout displayed less tolerance to drought stress and other phenotypes. Collectively, our results show that a regulatory network of ‘miR2105-OsSAPK10/OsbZIP86-OsNCED3’ control ABA biosynthesis in response to drought stress.One-sentence summary‘miR2105-OsbZIP86-OsNCED3’ module plays crucial role in mediating ABA biosynthesis to contribute to drought tolerance with no penalty with respect to agronomic traits under normal conditions.


Sign in / Sign up

Export Citation Format

Share Document