scholarly journals miR2105 regulates ABA biosynthesis via OsbZIP86-OsNCED3 module to contribute to drought tolerance in rice

2021 ◽  
Author(s):  
Weiwei Gao ◽  
Mingkang Li ◽  
Songguang Yang ◽  
Chunzhi Gao ◽  
Yan Su ◽  
...  

AbstractInduced abscisic acid (ABA) biosynthesis plays an important role in plant tolerance to abiotic stresses, including drought, cold and salinity. However, regulation pathway of the ABA biosynthesis in response to stresses is unclear. Here, we identified a rice miRNA, osa-miR2105 (miR2105), which plays a crucial role in ABA biosynthesis under drought stress. Analysis of expression, transgenic rice and cleavage site showed that OsbZIP86 is a target gene of miR2105. Subcellular localization and luciferase activity assays showed that OsbZIP86 is a nuclear transcription factor. In vivo and in vitro analyses showed that OsbZIP86 directly binds to the promoter of OsNCED3, and interacts with OsSAPK10, resulting in enhanced-expression of OsNCED3. Transgenic rice plants with knock-down of miR2105 or overexpression of OsbZIP86 showed higher ABA content, more tolerance to drought, a lower rate of water loss, more stomatal closure than wild type rice ZH11 under drought stress. These rice plants showed no penalty with respect to agronomic traits under normal conditions. By contrast, transgenic rice plants with miR2105 overexpression, OsbZIP86 downregulation, or OsbZIP86 knockout displayed less tolerance to drought stress and other phenotypes. Collectively, our results show that a regulatory network of ‘miR2105-OsSAPK10/OsbZIP86-OsNCED3’ control ABA biosynthesis in response to drought stress.One-sentence summary‘miR2105-OsbZIP86-OsNCED3’ module plays crucial role in mediating ABA biosynthesis to contribute to drought tolerance with no penalty with respect to agronomic traits under normal conditions.

2021 ◽  
Vol 12 ◽  
Author(s):  
Kai Xu ◽  
Shoujun Chen ◽  
Tianfei Li ◽  
Shunwu Yu ◽  
Hui Zhao ◽  
...  

Drought stress adversely affects crop growth and productivity worldwide. In response, plants have evolved several strategies in which numerous genes are induced to counter stress. High mobility group (HMG) proteins are the second most abundant family of chromosomal proteins. They play a crucial role in gene transcriptional regulation by modulating the chromatin/DNA structure. In this study, we isolated a novel HMG gene, OsHMGB707, one of the candidate genes localized in the quantitative trait loci (QTL) interval of rice drought tolerance, and examined its function on rice stress tolerance. The expression of OsHMGB707 was up-regulated by dehydration and high salt treatment. Its overexpression significantly enhanced drought tolerance in transgenic rice plants, whereas its knockdown through RNA interference (RNAi) did not affect the drought tolerance of the transgenic rice plants. Notably, OsHMGB707-GFP is localized in the cell nucleus, and OsHMGB707 is protein-bound to the synthetic four-way junction DNA. Several genes were up-regulated in OsHMGB707-overexpression (OE) rice lines compared to the wild-type rice varieties. Some of the genes encode stress-related proteins (e.g., DREB transcription factors, heat shock protein 20, and heat shock protein DnaJ). In summary, OsHMGB707 encodes a stress-responsive high mobility group protein and regulates rice drought tolerance by promoting the expression of stress-related genes.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1568
Author(s):  
Weina Si ◽  
Qizhi Liang ◽  
Li Chen ◽  
Feiyang Song ◽  
You Chen ◽  
...  

Drought is a key factor affecting plant growth and development. Heat shock transcription factors (Hsfs) have been reported to respond to diverse abiotic stresses, including drought stress. In the present study, functional characterization of maize heat shock transcription factor 05 (ZmHsf05) gene was conducted. Homologous analysis showed that ZmHsf05 belongs to Class A2 Hsfs. The mRNA expression level of ZmHsf05 can be affected by drought, high temperature, salt, and abscisic acid (ABA) treatment. Ectopic overexpression of ZmHsf05 in rice (Oryza sativa) could significantly enhance the drought tolerance. Faced with drought stress, transgenic rice exhibited better phenotypic performance, higher survival rate, higher proline content, and lower leaf water loss rate, compared with wild-type plant Zhonghua11. Additionally, we assessed the agronomic traits of seven transgenic rice lines overexpressing ZmHsf05 and found that ZmHsf05 altered agronomical traits in the field trials. Moreover, rice overexpressing ZmHsf05 was more sensitive to ABA and had either a lower germination rate or shorter shoot length under ABA treatment. The transcription level of key genes in the ABA synthesis and drought-related pathway were significantly improved in transgenic rice after drought stress. Collectively, our results showed that ZmHsf05 could improve drought tolerance in rice, likely in an ABA-dependent manner.


PLoS ONE ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. e0175734 ◽  
Author(s):  
Zhenzhen Wang ◽  
Qiang Han ◽  
Qian Zi ◽  
Shun Lv ◽  
Dewen Qiu ◽  
...  

2021 ◽  
Author(s):  
Yansha Han ◽  
Dianqing Gong ◽  
Huilan Yi

Abstract Background and aims Sulfate, the main source of sulfur in natural soil, is critical for plant growth and development, as well as plant responses to environmental stress, including drought. However, our understanding of the detailed mechanisms of sulfate-modulated drought tolerance in crop plants is far from complete. In the present study, by using foxtail millet (Setaria italica L.), an emerging model crop, we investigated the possible mechanisms involved in sulfate-induced crop tolerance to drought stress. Methods A combination of biochemical and molecular approaches, as well as stomatal apertures analyses were applied to determine the effect of sulfate application on sulfur assimilation, ABA biosynthesis, and stomatal movement. Results Upon drought exposure, sulfate (4 mM) pretreatment significantly alleviated the decrease in relative water content in foxtail millet leaves. Exogenous sulfate increased endogenous sulfate content and markedly enhanced the enzyme activity of sulfite reductase (SiR) and O-acetylserine(thiol)lyase (OASTL), as well as levels of their transcripts, leading to an increase in cysteine (Cys) production in drought-stressed leaves. Furthermore, in comparison with drought stress alone, sulfate application significantly upregulated the transcriptional expression of SiABA3 and SiAAO3, which contributed to the increased ABA levels in the leaves of drought-stressed foxtail millet seedlings. Moreover, the addition of sulfate decreased stomatal aperture, thus resulting in reduced leaf water loss in foxtail millet exposed to drought. Conclusion Our data suggest that sulfate application was able to promote drought tolerance of foxtail millet plants, at least partially by increasing ABA biosynthesis and triggering stomatal closure.


2014 ◽  
Vol 40 (7) ◽  
pp. 1190
Author(s):  
Yun-Peng WANG ◽  
Jing-Yong MA ◽  
Rui MA ◽  
Jian MA ◽  
Wen-Guo LIU

Sign in / Sign up

Export Citation Format

Share Document