Effect of Neonatal Thymectomy on Murine Small Intestinal Intraepithelial Lymphocytes Expressing T Cell Receptor αβ and “Clonally Forbidden Vβs”

Author(s):  
T. Lin ◽  
H. Takimoto ◽  
G. Matsuzaki ◽  
K. Nomoto
2001 ◽  
Vol 193 (3) ◽  
pp. 413-414
Author(s):  
Gobardhan Das ◽  
Dina S. Gould ◽  
Mathew M. Augustine ◽  
Gladis Fragoso ◽  
Edda Sciutto ◽  
...  

1997 ◽  
Vol 185 (3) ◽  
pp. 499-506 ◽  
Author(s):  
Haruhiko Suzuki ◽  
Gordon S. Duncan ◽  
Hiroaki Takimoto ◽  
Tak W. Mak

The interleukin-2 receptor β chain (IL-2Rβ) is expressed on a variety of hematopoietic cell types, including natural killer (NK) cells and nonconventional T lymphocyte subsets such as intestinal intraepithelial lymphocytes (IEL). However, the importance of IL-2Rβ-mediated signaling in the growth and development of these cells has yet to be clearly established. We have investigated IEL and NK cells in mice deficient for IL-2Rβ and describe here striking defects in the development of these cells. IL-2Rβ−/− mice exhibited an abnormal IEL cell population, characterized by a dramatic reduction in T cell receptor αβ CD8αα and T cell receptor γδ lymphocytes. This selective decrease indicates that IEL can be classified into those whose development and/or differentiation is dependent on IL-2Rβ function and those for which IL-2Rβ–mediated signaling is not essential. NK cell development was also found to be disrupted in IL-2Rβ–deficient mice, characterized by a reduction in NK1.1+CD3− cells in the peripheral circulation and an absence of NK cytotoxic activity in vitro. The dependence of NK cells and certain subclasses of IEL cells on IL-2Rβ expression points to an essential role for signaling through this receptor, presumably by IL-2 and/or IL-15, in the development of lymphocyte subsets of extrathymic origin.


1993 ◽  
Vol 152 (2) ◽  
pp. 305-322 ◽  
Author(s):  
Beate C. Sydora ◽  
Philip F. Mixter ◽  
Bronwyn Houlden ◽  
Robert Hershberg ◽  
Richard Levy ◽  
...  

2006 ◽  
Vol 84 (3) ◽  
pp. 363-368 ◽  
Author(s):  
Natsuko Takakura ◽  
Hiroyuki Wakabayashi ◽  
Koji Yamauchi ◽  
Mitsunori Takase

Intestinal mucosal immunity plays an important role in mucosal and systemic immune responses. We investigated the influences of orally administered bovine lactoferrin (LF) on cytokine production by intestinal intraepithelial lymphocytes (IEL) and mesenteric lymph-node (MLN) cells, especially T cells. Bovine LF or bovine serum albumin (control) was administered to mice once daily for 3 d. After 24 h from the last administration, IEL of the jejunum and ileum and MLN cells were isolated. These cells were cultured with and without the anti-T-cell-receptor antibody, and then the culture supernatants were assayed for cytokines with ELISA. Oral LF did not affect the ratio of T-cell subpopulations in IEL and MLN; however, LF enhanced both interferon (IFN)-γ and interleukin (IL)-10 production by unstimulated IEL and by IEL stimulated with the αβ T-cell receptor but not with the γδ T-cell receptor. LF also enhanced both IFN-γ and IL-10 production by stimulated and unstimulated MLN cells. The production level of IFN-γ by MLN cells was correlated with that of IL-10. These results suggest that oral LF enhances the production of both Th1-type and Th2/Tr-type cytokines in the small intestine of healthy animals.


1998 ◽  
Vol 95 (16) ◽  
pp. 9459-9464 ◽  
Author(s):  
Stephanie T. Page ◽  
Lisa Y. Bogatzki ◽  
Jessica A. Hamerman ◽  
Claire H. Sweenie ◽  
Philip J. Hogarth ◽  
...  

The majority of T cells develop in the thymus and exhibit well characterized phenotypic changes associated with their maturation. Previous analysis of intestinal intraepithelial lymphocytes (IEL) from nude mice and a variety of experimentally manipulated models led to the view that at least a portion of these cells represent a distinct T cell population that matures extrathymically. The IEL that are postulated to mature within the intestine include both T cell receptor (TCR) αβ- and γδ-bearing subpopulations. They can be distinguished from conventional thymically derived T cells in that they express an unusual coreceptor, a CD8α homodimer. In addition, they can utilize the Fc receptor γ-chain in place of the CD3-associated ζ-chain for TCR signaling and their maturation depends on the interleukin 2 receptor β-chain. Moreover, TCRαβ+CD8αα+ IEL are not subject to conventional thymic selection processes. To determine whether CD3−CD8αα+ IEL represent precursors of T cells developing extrathymically, we examined IEL from knockout mice lacking the recombination activating gene-1 (rag-1), CD3ɛ, or both Lck and Fyn, in which thymic T cell development is arrested. CD3−CD8αα+CD16+ IEL from all three mutant strains, as well as from nude mice, included cells that express pre-TCRα transcripts, a marker of T cell commitment. These IEL from lck−/−fyn−/− animals exhibited TCR β-gene rearrangement. However, CD3−CD8αα+CD16+ IEL from ɛ-deficient mice had not undergone Dβ-Jβ joining, despite normal rearrangement at the TCRβ locus in thymocytes from these animals. These results revealed another distinction between thymocytes and IEL, and suggested an unexpectedly early role for CD3ɛ in IEL maturation.


Sign in / Sign up

Export Citation Format

Share Document