tcr signaling
Recently Published Documents


TOTAL DOCUMENTS

672
(FIVE YEARS 164)

H-INDEX

76
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Judith F Ashouri ◽  
Elizabeth McCarthy ◽  
Steven Yu ◽  
Noah Perlmutter ◽  
Charles Lin ◽  
...  

How autoreactive CD4 T cells develop to cause rheumatoid arthritis remains unknown. We used a reporter for antigen-receptor signaling in the SKG autoimmune arthritis model to profile a T cell subpopulation enriched for arthritogenic naive CD4 T cells before arthritis onset by bulk and single cell RNA and T cell antigen-receptor (TCR) sequencing. Our analyses reveal that despite their impaired proximal TCR signaling, a subset of SKG naive CD4 T cells that have recently encountered endogenous antigen upregulate gene programs associated with positive regulation of T cell activation and cytokine signaling at higher levels than wild type cells in the pre-disease state. These arthritogenic cells also induce genes associated with negative regulation of T cell activation but do so less efficiently than wild type cells. Furthermore, their TCR sequences exhibit a previously unrecognized biased peripheral TCR Vβ repertoire likely driven by endogenous viral superantigens. These particular Vβs, known to recognize endogenous mouse mammary tumor virus (MMTV) superantigen, are further expanded in arthritic joints. Our results demonstrate that autoreactive naive CD4 T cells which recognize endogenous viral superantigens are poised to cause disease by their altered transcriptome.


2022 ◽  
Vol 23 (2) ◽  
pp. 844
Author(s):  
Myun Soo Kim ◽  
Dongmin Park ◽  
Sora Lee ◽  
Sunyoung Park ◽  
Kyung Eun Kim ◽  
...  

Erythroid differentiation regulator 1 (Erdr1) has previously been reported to control thymocyte selection via TCR signal regulation, but the effect of Erdr1 as a TCR signaling modulator was not studied in peripheral T cells. In this report, it was determined whether Erdr1 affected TCR signaling strength in CD4 T cells. Results revealed that Erdr1 significantly enhanced the anti-TCR antibody-mediated activation and proliferation of T cells while failing to activate T cells in the absence of TCR stimulation. In addition, Erdr1 amplified Ca2+ influx and the phosphorylation of PLCγ1 in CD4 T cells with the TCR stimuli. Furthermore, NFAT1 translocation into nuclei in CD4 T cells was also significantly promoted by Erdr1 in the presence of TCR stimulation. Taken together, our results indicate that Erdr1 positively modulates TCR signaling strength via enhancing the PLCγ1/Ca2+/NFAT1 signal transduction pathway.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Min Xiao ◽  
Xuqi Zheng ◽  
Xiaomin Li ◽  
Xinyu Wu ◽  
Yefei Huang ◽  
...  

Abstract Background The currently known risk loci could explain a small proportion of the heritability of ankylosing spondylitis (AS). Epigenetics might account for the missing heritability. We aimed to seek more novel AS-associated DNA methylation alterations and delineate the regulatory effect of DNA methylation and gene expression with integrated analysis of methylome and transcriptome. Methods Epigenome-wide DNA methylation and mRNA expression were profiled in peripheral blood mononuclear cells (PBMCs) from 45 individuals (AS: health controls (HCs) = 30:15) with high-throughput array. The methylome was validated in an independent cohort (AS: HCs = 12:12). Pearson correlation analysis and causal inference tests (CIT) were conducted to determine potentially causative regulatory effects of methylation on mRNA expression. Results A total of 4794 differentially methylated positions (DMPs) were identified associated with AS, 2526 DMPs of which were validated in an independent cohort. Both cohorts highlighted T cell receptor (TCR) signaling and Th17 differentiation pathways. Besides, AS patients manifested increased DNA methylation variability. The methylation levels of 158 DMPs were correlated with the mRNA expression levels of 112 genes, which formed interconnected network concentrated on Th17 cell differentiation and TCR signaling pathway (LCK, FYN, CD3G, TCF7, ZAP70, CXCL12, and PLCG1). We also identified several cis-acting DNA methylation and gene expression changes associated with AS risk, which might regulate the cellular mechanisms underlying AS. Conclusions Our studies outlined the landscapes of epi-signatures of AS and several methylation-gene expression-AS regulatory axis and highlighted the Th17 cell differentiation and TCR signaling pathway, which might provide innovative molecular targets for therapeutic interventions for AS.


2021 ◽  
Author(s):  
Jiali Zhang ◽  
Erwei Zuo ◽  
Minfang Song ◽  
Li Chen ◽  
Zhenzhou Jiang ◽  
...  

THEMIS plays an indispensable role in T cells, but its mechanism of action is highly controversial. Using the systematic proximity labeling methodology PEPSI, we identified THEMIS as an uncharacterized substrate for the phosphatase SHP1. Saturated mutagenesis analysis revealed that THEMIS phosphorylation at the evolutionally conserved Tyr34 residue was oppositely regulated by SHP1 and the kinase LCK. Like THEMIS-/- mice, THEMIS Y34F/Y34F knock-in mice showed a significant decrease in CD4 thymocytes and mature CD4 T cells, but a normal thymic development and peripheral homeostasis of CD8 T cells. Mechanistically, phosphorylated THEMIS induced by TCR activation acts as a "priming substrate" to bind SHP1 and convert its phosphatase activity from basal level to nearly fully activated level, ensuring an appropriate negative regulation of TCR signaling. However, cytokine signaling in CD8 T cells failed to elicit THEMIS Y34 phosphorylation, revealing both phosphorylation-dependent and -independent roles of THEMIS in controlling T cell maturation and expansion.


2021 ◽  
Author(s):  
Vladimir Laletin ◽  
Pierre-Louis Bernard ◽  
Montersino Camille ◽  
Yuji Yamanashi ◽  
Daniel Olive ◽  
...  

Targeting intracellular inhibiting proteins is a promising strategy to improve CD8+ T cell anti-tumor efficacy. DOK1 and DOK2 are CD8+ T cell inhibitory proteins that are targeted in this study in order to improve the activation and cytotoxic capacities of these cells. To evaluate the role of DOK-1 and DOK-2 depletion in physiology and effector function of T CD8+ lymphocyte and in cancer progression, a transgenic T cell receptor mouse model specific to melanoma antigen hgp100 (pmel-1 TCR Tg) was established. Depletion of both Dok1 and Dok2 did not affect the development, proliferation, mortality, activation and cytotoxic function of naive CD8+ T cells. However, after an in vitro pre-stimulation Dok1/Dok2 DKO CD8+ T cells had higher percentage of effector memory T cells and showed an increase in levels of pAKT and pERK upon TCR stimulation. Despite this improved TCR signaling, pre-stimulated Dok1/Dok2 DKO CD8+ T cells did not show any increase in their activation or cytotoxicity capacities against melanoma cell line expressing hgp100 in vitro. Altogether we demonstrate here a novel aspect of the negative regulation by DOK1 and DOK2 proteins in CD8+ T cells. In conclusion, DOK1 and DOK2 have an inhibitory role following long term T cell stimulations.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Soeun Kim ◽  
Guk-Yeol Park ◽  
Jong Seok Park ◽  
Jiho Park ◽  
Hyebeen Hong ◽  
...  

Central tolerance is achieved through positive and negative selection of thymocytes mediated by T cell receptor (TCR) signaling strength. Thus, dysregulation of the thymic selection process often leads to autoimmunity. Here, we show that Capicua (CIC), a transcriptional repressor that suppresses autoimmunity, controls the thymic selection process. Loss of CIC prior to T-cell lineage commitment impairs both positive and negative selection of thymocytes. CIC deficiency attenuated TCR signaling in CD4+CD8+ double-positive (DP) cells, as evidenced by a decrease in CD5 and phospho-ERK levels and calcium flux. We identified Spry4, Dusp4, Dusp6, and Spred1 as CIC target genes that could inhibit TCR signaling in DP cells. Furthermore, impaired positive selection and TCR signaling were partially rescued in Cic and Spry4 double mutant mice. Our findings indicate that CIC is a transcription factor required for thymic T cell development and suggests that CIC acts at multiple stages of T cell development and differentiation to prevent autoimmunity.


2021 ◽  
Author(s):  
Jaime James ◽  
Yifei Chen ◽  
Clara M. Hernandez ◽  
Florian Forster ◽  
Markus Dagnell ◽  
...  

AbstractChronic autoimmune diseases are associated with mutations in PTPN22, a modifier of T cell receptor signaling. As with all protein tyrosine phosphatases the activity of PTPN22 is redox regulated, but if or how such regulation can modulate inflammatory pathways in vivo is not known. To determine this, we created a mouse with a cysteine-to-serine mutation at position 129 in PTPN22 (C129S), a residue proposed to alter the redox regulatory properties of PTPN22 by forming a disulfide with the catalytic C227 residue. The C129S mutant mouse showed a stronger T cell-dependent inflammatory response and development of T cell dependent autoimmune arthritis due to enhanced TCR signaling and activation of T cells, an effect neutralized by a mutation in Ncf1, a component of the NOX2 complex. Activity assays with purified proteins suggest that the functional results can be explained by an increased sensitivity to oxidation of the C129S mutated PTPN22 protein. We also observed that the disulfide of native PTPN22 can be directly reduced by the thioredoxin system, while the C129S mutant lacking this disulfide was less amenable to reductive reactivation. In conclusion, we show that PTPN22 functionally interacts with Ncf1 and is regulated by oxidation via the non-catalytic C129 residue and oxidation-prone PTPN22 leads to increased severity in the development of T cell-dependent autoimmunity.Significance statementA hitherto unstudied aspect of PTPN22 biology is its regulation by cell redox states. Here we created a mouse model where PTPN22 was mutated to respond differentially to redox levels in vivo and found that PTPN22 function is regulated by reactive oxygen species and that redox regulation of PTPN22 impacts T-cell-dependent autoimmune inflammation.


2021 ◽  
Author(s):  
Jonathan J. Park ◽  
Kyoung A V. Lee ◽  
Stanley Z. Lam ◽  
Sidi Chen

AbstractT cell receptor (TCR) repertoires are critical for antiviral immunity. Determining the TCR repertoires composition, diversity, and dynamics and how they change during viral infection can inform the molecular specificity of viral infection such as SARS-CoV-2. To determine signatures associated with COVID-19 disease severity, here we performed a large-scale analysis of over 4.7 billion sequences across 2,130 TCR repertoires from COVID-19 patients and healthy donors. TCR repertoire analyses from these data identified and characterized convergent COVID-19 associated CDR3 gene usages, specificity groups, and sequence patterns. T cell clonal expansion was found to be associated with upregulation of T cell effector function, TCR signaling, NF-kB signaling, and Interferon-gamma signaling pathways. Machine learning approaches accurately predicted disease severity for patients based on TCR sequence features, with certain high-power models reaching near-perfect AUROC scores across various predictor permutations. These analyses provided an integrative, systems immunology view of T cell adaptive immune responses to COVID-19.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kinjal Shah ◽  
Amr Al-Haidari ◽  
Jianmin Sun ◽  
Julhash U. Kazi

AbstractInteraction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein–protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.


Sign in / Sign up

Export Citation Format

Share Document