Stability and Boundedness for Equations with Infinite Delay

Author(s):  
V. Lakshmikantham ◽  
Lizhi Wen ◽  
Binggen Zhang
Keyword(s):  
2020 ◽  
Vol 4 (2) ◽  
pp. 104-115
Author(s):  
Khalil Ezzinbi ◽  

This work concerns the study of the controllability for some impulsive partial functional integrodifferential equation with infinite delay in Banach spaces. We give sufficient conditions that ensure the controllability of the system by supposing that its undelayed part admits a resolvent operator in the sense of Grimmer, and by making use of the measure of noncompactness and the Mönch fixed-point Theorem. As a result, we obtain a generalization of the work of K. Balachandran and R. Sakthivel (Journal of Mathematical Analysis and Applications, 255, 447-457, (2001)) and a host of important results in the literature, without assuming the compactness of the resolvent operator. An example is given for illustration.


2020 ◽  
Vol 386 ◽  
pp. 125499
Author(s):  
Áron Fehér ◽  
Lőrinc Márton ◽  
Mihály Pituk

Author(s):  
Shengli Xie

AbstractIn this paper we prove the existence and uniqueness of mild solutions for impulsive fractional integro-differential evolution equations with infinite delay in Banach spaces. We generalize the existence theorem for integer order differential equations to the fractional order case. The results obtained here improve and generalize many known results.


2021 ◽  
pp. 107284
Author(s):  
Davor Dragičević ◽  
Mihály Pituk

2009 ◽  
Vol 2009 ◽  
pp. 1-16 ◽  
Author(s):  
Zhixiang Yu ◽  
Zhong Li

A discrete two-prey one-predator model with infinite delay is proposed. A set of sufficient conditions which guarantee the permanence of the system is obtained. By constructing a suitable Lyapunov functional, we also obtain sufficient conditions ensuring the global attractivity of the system. An example together with its numerical simulation shows the feasibility of the main results.


Sign in / Sign up

Export Citation Format

Share Document