Optimal controls of fractional impulsive partial neutral stochastic integro-differential systems with infinite delay in Hilbert spaces

2017 ◽  
Vol 15 (3) ◽  
pp. 1051-1068 ◽  
Author(s):  
Zuomao Yan ◽  
Xiumei Jia
2020 ◽  
Vol 37 (4) ◽  
pp. 1070-1088 ◽  
Author(s):  
Sumit Arora ◽  
Soniya Singh ◽  
Jaydev Dabas ◽  
Manil T Mohan

Abstract This paper is concerned with the approximate controllability of semilinear impulsive functional differential systems in Hilbert spaces with non-local conditions. We establish sufficient conditions for approximate controllability of such systems via resolvent operator and Schauder’s fixed point theorem. An application involving the impulse effect associated with delay and non-local conditions is presented to verify our claimed results.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Xichao Sun ◽  
Litan Yan ◽  
Jing Cui

This paper is concerned with the controllability of a class of fractional neutral stochastic integro-differential systems with infinite delay in an abstract space. By employing fractional calculus and Sadovskii's fixed point principle without assuming severe compactness condition on the semigroup, a set of sufficient conditions are derived for achieving the controllability result.


Author(s):  
Zuomao Yan ◽  
Hongwu Zhang

We study the approximate controllability of a class of fractional partial neutral integro-differential inclusions with infinite delay in Hilbert spaces. By using the analytic α-resolvent operator and the fixed point theorem for discontinuous multivalued operators due to Dhage, a new set of necessary and sufficient conditions are formulated which guarantee the approximate controllability of the nonlinear fractional system. The results are obtained under the assumption that the associated linear system is approximately controllable. An example is provided to illustrate the main results.


Sign in / Sign up

Export Citation Format

Share Document