Regeneration of Pancreatic Endocrine Cells in Interferon-Gamma Transgenic Mice

Author(s):  
Nora E. Sarvetnick ◽  
Dangling Gu
Development ◽  
1984 ◽  
Vol 82 (1) ◽  
pp. 131-145
Author(s):  
B. B. Rawdon ◽  
Beverley Kramer ◽  
Ann Andrew

The aim of this experiment was to find out whether or not, at early stages of development, progenitors of the various types of gut endocrine cells are localized to one or more specific regions of the gastrointestinal tract. Transverse strips of blastoderm two to four somites in length were excised between the levels of somites 5 and 27 in chick embryos at 5- to 24-somite stages and were cultured as chorioallantoic grafts. The distribution of endocrine cells in the grafts revealed confined localization of progenitor cells only in the case of insulinimmunoreactive cells. Theprogenitors of cells with somatostatin-, pancreatic polypeptide-, glucagon-, secretin-, gastrin/CCK-, motilin-, neurotensin- and serotonin-like immunoreactivity were distributed along the length of the presumptive gut at the time of explantation; indeed, in many cases they were more widespread than are their differentiated progeny in normal gut of the same age. This finding indicates that conditions in grafts must differ from those that operate in the intact embryo. Also it may explain the occurrence of ectopic gut or pancreatic endocrine cells in tumours of the digestive tract.


1984 ◽  
Vol 31 (5) ◽  
pp. 657-664
Author(s):  
SHIGERU WAKABAYASHI ◽  
SHOHEI KAGAWA ◽  
KEIKO NAKAO ◽  
KEIKO YOSHIDA ◽  
KOICHI MIMURA ◽  
...  

2005 ◽  
Vol 12 (4) ◽  
pp. 327-332 ◽  
Author(s):  
Kazuya Edamura ◽  
Koko Nasu ◽  
Yukiko Iwami ◽  
Ryohei Nishimura ◽  
Hiroyuki Ogawa ◽  
...  

2015 ◽  
Vol 22 (16) ◽  
pp. 1483-1495 ◽  
Author(s):  
Prabhu Mathiyalagan ◽  
Samuel T. Keating ◽  
Keith Al-Hasani ◽  
Assam El-Osta

2021 ◽  
Author(s):  
Meritxell Rovira ◽  
Goutham Atla ◽  
Miguel Angel Maestro ◽  
Vane Grau ◽  
Javier García-Hurtado ◽  
...  

SUMMARYUnderstanding genomic regulatory mechanisms of pancreas differentiation is relevant to the pathophysiology of diabetes mellitus, and to the development of replacement therapies. Numerous transcription factors promote β cell differentiation, although less is known about negative regulators. Earlier epigenomic studies suggested that the transcriptional repressor REST could be a suppressor of endocrine gene programs in the embryonic pancreas. However, pancreaticRestknock-out mice failed to show increased numbers of endocrine cells, suggesting that REST is not a major regulator of endocrine differentiation. Using a different conditional allele that enables profound REST inactivation, we now observe a marked increase in the formation of pancreatic endocrine cells. REST inhibition also promoted endocrinogenesis in zebrafish and mouse early postnatal ducts, and induced β-cell specific genes in human adult duct-derived organoids. Finally, we define REST genomic programs that suppress pancreatic endocrine differentiation. These results establish a crucial role of REST as a negative regulator of pancreatic endocrine differentiation.


Oncogene ◽  
1997 ◽  
Vol 14 (25) ◽  
pp. 3093-3098 ◽  
Author(s):  
L A Cairns ◽  
S Crotta ◽  
M Minuzzo ◽  
P Ricciardi-Castagnoli ◽  
L Pozzi ◽  
...  

Development ◽  
1996 ◽  
Vol 122 (4) ◽  
pp. 1157-1163 ◽  
Author(s):  
B.H. Upchurch ◽  
B.P. Fung ◽  
G. Rindi ◽  
A. Ronco ◽  
A.B. Leiter

The hormone peptide YY is produced by endocrine cells in the pancreas, ileum and colon. We have previously shown that peptide YY is coexpressed in all four islet cell types in the murine pancreas when they first appear, suggesting a common peptide YY-producing progenitor. In the colon, peptide YY has been frequently identified in glucagon-expressing L-type endocrine cells. Characterization of colonic endocrine tumors in transgenic mice expressing simian virus 40 large T antigen under the control of the peptide YY gene 5′ flanking region revealed tumor cells producing not only peptide YY and glucagon, but also neurotensin, cholecystokinin, substance P, serotonin, secretin, and gastrin. This suggested that multiple enteroendocrine lineages were related to peptide YY-producing cells. Subsequent examination of the ontogeny of colonic endocrine differentiation in nontransgenic mice revealed that peptide YY was the first hormone to appear during development, at embryonic day 15.5. Between embryonic days 16.5 and 18.5, cells expressing glucagon, cholecystokinin, substance P, serotonin, secretin, neurotensin, gastrin and somatostatin first appeared and peptide YY was coexpressed in each cell type at this time. Peptide YY coexpression continued in a significant fraction of most enteroendocrine cell types throughout fetal and postnatal development and into adulthood, with the exception of serotonin-producing cells. This latter population of cells expanded dramatically after birth with rare coexpression of peptide YY. These studies indicate that expression of peptide YY is an early event in colonic endocrine differentiation and support the existence of a common progenitor for all endocrine cells in the colon.


1992 ◽  
Vol 101 (4) ◽  
pp. 795-799
Author(s):  
C. Saulnier-Michel ◽  
M. Fromont-Racine ◽  
R. Pictet

RW cells are pancreatic endocrine RIN cells that have been stably transfected with a chimeric gene that places the expression of the dominant selection gpt gene under the control of the insulin gene regulatory sequences. These RW cells were examined for hormone content using immunocytochemistry. This analysis shows that: first, there are cells that are negative for insulin although they were cultured under selective pressure. Second, there is a higher proportion of somatostatin-producing cells than in the parental RIN cells; these somatostatin cells form two populations: one of cells containing only somatostatin and, surprisingly, one made of cells containing both insulin and somatostatin. Thus: (1) expression of the transfected and endogenous insulin regulatory sequences is not regulated in a coordinate fashion; (2) the presence of both hormones in the same cell suggests that the regulation of the expression of insulin and somatostatin genes and the differentiation pathway of the two respective cell types may be closely related.


Sign in / Sign up

Export Citation Format

Share Document