pancreatic endocrine cells
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 27)

H-INDEX

25
(FIVE YEARS 3)

Author(s):  
Fredrik C. Wieland ◽  
Mireille M.J.P.E. Sthijns ◽  
Thomas Geuens ◽  
Clemens A. van Blitterswijk ◽  
Vanessa L.S. LaPointe

Pancreatic beta cells have inadequate levels of antioxidant enzymes, and the damage induced by oxidative stress poses a challenge for their use in a therapy for patients with type 1 diabetes. It is known that the interaction of the pancreatic endocrine cells with support cells can improve their survival and lead to less vulnerability to oxidative stress. Here we investigated alpha (alpha TC-1), beta (INS1E) and endothelial (HUVEC) cells assembled into aggregates known as pseudoislets as a model of the pancreatic islets of Langerhans. We hypothesised that the coculture of alpha, beta and endothelial cells would be protective against oxidative stress. First, we showed that adding endothelial cells decreased the percentage of oxidative stress-positive cells. We then asked if the number of endothelial cells or the size (number of cells) of the pseudoislet could increase the protection against oxidative stress. However, no additional benefit was observed by those changes. On the other hand, we identified a potential supportive effect of the alpha cells in reducing oxidative stress in beta and endothelial cells. We were able to link this to the incretin glucagon-like peptide-1 (GLP-1) by showing that the absence of alpha cells in the pseudoislet caused increased oxidative stress, but the addition of GLP-1 could restore this. Together, these results provide important insights into the roles of alpha and endothelial cells in protecting against oxidative stress.


Author(s):  
Karrie D Dudek ◽  
Anna B Osipovich ◽  
Jean-Philippe Cartailler ◽  
Guoquing Gu ◽  
Mark A Magnuson

Abstract Insm1, Neurod1, and Pax6 are essential for the formation and function of pancreatic endocrine cells. Here, we report comparative immunohistochemical, transcriptomic, functional enrichment, and RNA splicing analyses of these genes using gene knock-out mice. Quantitative immunohistochemical analysis confirmed that elimination of each of these three factors variably impairs the proliferation, survival, and differentiation of endocrine cells. Transcriptomic analysis revealed that each factor contributes uniquely to the transcriptome although their effects were overlapping. Functional enrichment analysis revealed that genes downregulated by the elimination of Insm1, Neurod1, and Pax6 are commonly involved in mRNA metabolism, chromatin organization, secretion, and cell cycle regulation, and upregulated genes are associated with protein degradation, autophagy, and apoptotic process. Elimination of Insm1, Neurod1, and Pax6 impaired expression of many RNA-binding proteins thereby altering RNA splicing events, including for Syt14 and Snap25, two genes required for insulin secretion. All three factors are necessary for normal splicing of Syt14, and both Insm1 and Pax6 are necessary for the processing of Snap25. Collectively, these data provide new insights into how Insm1, Neurod1, and Pax6 contribute to the formation of functional pancreatic endocrine cells.


2021 ◽  
Vol 13 (588) ◽  
pp. eabf1587
Author(s):  
Yury Kryvalap ◽  
Matthew L. Jiang ◽  
Nadzeya Kryvalap ◽  
Cole Hendrickson ◽  
Jan Czyzyk

Pancreatic endocrine cell development is dependent on the rescue of the neurogenin3 (Ngn3) transcription factor from repression by Notch. The signals that prevent Notch signaling, thereby allowing the formation of pancreatic endocrine cells, remain unclear. We show that inhibiting serpinB13, a cathepsin L (CatL) protease inhibitor expressed in the pancreatic epithelium, caused in vitro and in vivo cleavage of the extracellular domain of Notch1. This was followed by a twofold increase in the Ngn3+ progenitor cell population and enhanced conversion of these cells to express insulin. Conversely, both recombinant serpinB13 protein and CatL deficiency down-regulated pancreatic Ngn3+ cell output. Mouse embryonic exposure to inhibitory anti-serpinB13 antibody resulted in increased islet cell mass and improved outcomes in streptozotocin-induced diabetes at 8 weeks of age. Moreover, anti-serpinB13 autoantibodies stimulated Ngn3+ endocrine progenitor formation in the pancreas and were associated with delayed progression to type 1 diabetes (T1D) in children. These data demonstrate long-term impact of serpinB13 activity on islet biology and suggest that promoting protease activity by blocking this serpin may have prophylactic potential in T1D.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diego Balboa ◽  
Diepiriye G. Iworima ◽  
Timothy J. Kieffer

Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.


2021 ◽  
Author(s):  
Meritxell Rovira ◽  
Goutham Atla ◽  
Miguel Angel Maestro ◽  
Vane Grau ◽  
Javier García-Hurtado ◽  
...  

SUMMARYUnderstanding genomic regulatory mechanisms of pancreas differentiation is relevant to the pathophysiology of diabetes mellitus, and to the development of replacement therapies. Numerous transcription factors promote β cell differentiation, although less is known about negative regulators. Earlier epigenomic studies suggested that the transcriptional repressor REST could be a suppressor of endocrine gene programs in the embryonic pancreas. However, pancreaticRestknock-out mice failed to show increased numbers of endocrine cells, suggesting that REST is not a major regulator of endocrine differentiation. Using a different conditional allele that enables profound REST inactivation, we now observe a marked increase in the formation of pancreatic endocrine cells. REST inhibition also promoted endocrinogenesis in zebrafish and mouse early postnatal ducts, and induced β-cell specific genes in human adult duct-derived organoids. Finally, we define REST genomic programs that suppress pancreatic endocrine differentiation. These results establish a crucial role of REST as a negative regulator of pancreatic endocrine differentiation.


Development ◽  
2021 ◽  
pp. dev.196964
Author(s):  
Anna B. Osipovich ◽  
Karrie D. Dudek ◽  
Emily Greenfest-Allen ◽  
Jean-Philippe Cartailler ◽  
Elisabetta Manduchi ◽  
...  

To gain a deeper understanding of pancreatic β-cell development, we used iterativeWGCNA to calculate a gene co-expression network (GCN) from eleven temporally- and genetically-defined murine cell populations. The GCN, which contained 91 distinct modules, was then used to gain three new biological insights. First, we found that the clustered protocadherin genes are differentially-expressed during pancreas development. Pcdhγ is preferentially expressed in pancreatic endoderm, Pcdhβ in nascent islets, and Pcdhα in mature β-cells. Second, after extracting sub-networks of transcriptional regulators for each developmental stage we identified 81 zinc finger protein (ZFP) genes that are preferentially expressed during endocrine specification and β-cell maturation. Third, we used the GCN to select three ZFPs for further analysis by CRISPR mutagenesis of mice. Zfp800 null mice exhibited early post-natal lethality, and at E18.5 their pancreata exhibited a reduced number of pancreatic endocrine cells, alterations in exocrine cell morphology, and marked changes in expression of genes involved in protein translation, hormone secretion, and developmental pathways in the pancreas. Together, our results suggest that developmentally-oriented GCNs have utility for gaining new insights into gene regulation during organogenesis.


2021 ◽  
Author(s):  
Xuehua Liang ◽  
Hualin Duan ◽  
Yahui Mao ◽  
Ulrich Koestner ◽  
Yiqiu Wei ◽  
...  

The allocation and specification of pancreatic endocrine lineages are tightly regulated by transcription factors. Disturbances in differentiation of these lineages contribute to the development of various metabolic diseases, including diabetes. The Insulinoma-associated protein 1 (<i>Insm1</i>), which encodes a protein containing one SNAG domain and five zinc fingers, plays essential roles in pancreatic endocrine cell differentiation and in mature beta-cell function. In the present study, we compared the differentiation of pancreatic endocrine cells between Insm1 null and Insm1 SNAG domain mutants (Insm1delSNAG) to explore the specific function of the SNAG domain of Insm1. We show that the delta-cell number is increased in Insm1delSNAG but not in Insm1 null mutants as compared to the control mice. We also show a less severe reduction of the beta-cell number in Insm1delSNAG as that in Insm1 null mutants. In addition, similar deficits are observed in alpha-, PP- and epsilon-cell in Insm1delSNAG and Insm1 null mutants. We further identified that the increased delta-cell number is due to beta- to delta-cell transdifferentiation. Mechanistically, the SNAG domain of Insm1 interacts with Lsd1, the demethylase of H3K4me1/2. Mutation in the SNAG domain of Insm1 results in impaired recruitment of Lsd1 and increased H3K4me1/2 levels at <i>H</i><i>hex</i> loci that are bound by Insm1, thereby promoting the transcriptional activity of the delta-cell-specific gene <i>Hhex</i>. Our study has identified a novel function of the SNAG domain of Insm1 in the regulation of pancreatic endocrine cells differentiation, particularly in the repression of beta- to delta-cell transdifferentiation.


2021 ◽  
Author(s):  
Xuehua Liang ◽  
Hualin Duan ◽  
Yahui Mao ◽  
Ulrich Koestner ◽  
Yiqiu Wei ◽  
...  

The allocation and specification of pancreatic endocrine lineages are tightly regulated by transcription factors. Disturbances in differentiation of these lineages contribute to the development of various metabolic diseases, including diabetes. The Insulinoma-associated protein 1 (<i>Insm1</i>), which encodes a protein containing one SNAG domain and five zinc fingers, plays essential roles in pancreatic endocrine cell differentiation and in mature beta-cell function. In the present study, we compared the differentiation of pancreatic endocrine cells between Insm1 null and Insm1 SNAG domain mutants (Insm1delSNAG) to explore the specific function of the SNAG domain of Insm1. We show that the delta-cell number is increased in Insm1delSNAG but not in Insm1 null mutants as compared to the control mice. We also show a less severe reduction of the beta-cell number in Insm1delSNAG as that in Insm1 null mutants. In addition, similar deficits are observed in alpha-, PP- and epsilon-cell in Insm1delSNAG and Insm1 null mutants. We further identified that the increased delta-cell number is due to beta- to delta-cell transdifferentiation. Mechanistically, the SNAG domain of Insm1 interacts with Lsd1, the demethylase of H3K4me1/2. Mutation in the SNAG domain of Insm1 results in impaired recruitment of Lsd1 and increased H3K4me1/2 levels at <i>H</i><i>hex</i> loci that are bound by Insm1, thereby promoting the transcriptional activity of the delta-cell-specific gene <i>Hhex</i>. Our study has identified a novel function of the SNAG domain of Insm1 in the regulation of pancreatic endocrine cells differentiation, particularly in the repression of beta- to delta-cell transdifferentiation.


2021 ◽  
Author(s):  
Bryan J. González ◽  
Haoquan Zhao ◽  
Jacqueline Niu ◽  
Damian J. Williams ◽  
Jaeyop Lee ◽  
...  

AbstractMutations in HNF1A cause Maturity Onset Diabetes of the Young type 3 (MODY3), the most prevalent form of monogenic diabetes. We generated stem cell-derived pancreatic endocrine cells from human embryonic stem cells (hESCs) with induced hypomorphic mutations in HNF1A. Using these cells, we show that HNF1A orchestrates a transcriptional program required for distinct aspects of β-cell fate and function. During islet cell differentiation, HNF1A deficiency biases islet endocrine cells towards an α-cell fate associated with PAX4 down-regulation. HNF1A- deficient β-cells display impaired basal and glucose stimulated-insulin secretion in association with a reduction in CACNA1A and intracellular calcium levels, and impaired insulin granule exocytosis in association with SYT13 down-regulation. Knockout of PAX4, CACNA1A and SYT13 reproduce the relevant phenotypes. Reduction of insulin secretion is associated with accumulation of enlarged secretory granules, and altered stoichiometry of secreted insulin to C-peptide. In HNF1A deficient β-cells, glibenclamide, a sulfonylurea drug used in the treatment of MODY3 patients, increases intracellular calcium to levels beyond those achieved by glucose, and restores C-peptide and insulin secretion to a normal stoichiometric ratio. To study HNF1A deficiency in the context of a human disease model, we also generated stem cell-derived pancreatic endocrine cells from two MODY3 patient’s induced pluripotent stem cells (iPSCs). While insulin secretion defects are constitutive in cells with complete HNF1A loss of function, β-cells heterozygous for hypomorphic HNF1A mutations are initially normal, but lose the ability to secrete insulin and acquire abnormal stoichiometric secretion ratios. Importantly, the defects observed in these stem cell models are also seen in circulating proportions of insulin:C-peptide in nine MODY3 patients.One sentence of summaryDeficiency of the transcription factor HNF1A biases islet endocrine cell fate towards α-cells, impairs intracellular calcium homeostasis and insulin exocytosis, alters the stoichiometry of insulin to C-peptide release, and leads to an accumulation of abnormal insulin secretory granules in β-cells.


Sign in / Sign up

Export Citation Format

Share Document