endocrine differentiation
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 25)

H-INDEX

27
(FIVE YEARS 2)

Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4663
Author(s):  
Paula M. Schmidtlein ◽  
Clara Volz ◽  
Rüdiger Braun ◽  
Isabel Thürling ◽  
Olha Lapshyna ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and therapy-resistant cancer types which is largely due to tumor heterogeneity, cancer cell de-differentiation, and early metastatic spread. The major molecular subtypes of PDAC are designated classical/epithelial (E) and quasi-mesenchymal (QM) subtypes, with the latter having the worst prognosis. Epithelial–mesenchymal transition (EMT) and the reverse process, mesenchymal-epithelial transition (MET), are involved in regulating invasion/metastasis and stem cell generation in cancer cells but also early pancreatic endocrine differentiation or de-differentiation of adult pancreatic islet cells in vitro, suggesting that pancreatic ductal exocrine and endocrine cells share common EMT programs. Using a panel of PDAC-derived cell lines classified by epithelial/mesenchymal expression as either E or QM, we compared their trans-differentiation (TD) potential to endocrine progenitor or β cell-like cells since studies with human pancreatic cancer cells for possible future TD therapy in PDAC patients are not available so far. We observed that QM cell lines responded strongly to TD culture using as inducers 5′-aza-2′-deoxycytidine or growth factors/cytokines, while their E counterparts were refractory or showed only a weak response. Moreover, the gain of plasticity was associated with a decrease in proliferative and migratory activities and was directly related to epigenetic changes acquired during selection of a metastatic phenotype as revealed by TD experiments using the paired isogenic COLO 357-L3.6pl model. Our data indicate that a QM phenotype in PDAC coincides with increased plasticity and heightened trans-differentiation potential to activate a pancreatic β cell-specific transcriptional program. We strongly assume that this specific biological feature has potential to be exploited clinically in TD-based therapy to convert metastatic PDAC cells into less malignant or even benign cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hyo Jeong Yong ◽  
Gengqiang Xie ◽  
Chengyang Liu ◽  
Wei Wang ◽  
Ali Naji ◽  
...  

NEUROGENIN3+ (NEUROG3+) cells are considered to be pancreatic endocrine progenitors. Our current knowledge on the molecular program of NEUROG3+ cells in humans is largely extrapolated from studies in mice. We hypothesized that single-cell RNA-seq enables in-depth exploration of the rare NEUROG3+ cells directly in humans. We aligned four large single-cell RNA-seq datasets from postnatal human pancreas. Our integrated analysis revealed 10 NEUROG3+ epithelial cells from a total of 11,174 pancreatic cells. Noticeably, human NEUROG3+ cells clustered with mature pancreatic cells and epsilon cells displayed the highest frequency of NEUROG3 positivity. We confirmed the co-expression of NEUROG3 with endocrine markers and the high percentage of NEUROG3+ cells among epsilon cells at the protein level based on immunostaining on pancreatic tissue sections. We further identified unique genetic signatures of the NEUROG3+ cells. Regulatory network inference revealed novel transcription factors including Prospero homeobox protein 1 (PROX1) may act jointly with NEUROG3. As NEUROG3 plays a central role in endocrine differentiation, knowledge gained from our study will accelerate the development of beta cell regeneration therapies to treat diabetes.


2021 ◽  
Author(s):  
Meritxell Rovira ◽  
Goutham Atla ◽  
Miguel Angel Maestro ◽  
Vane Grau ◽  
Javier García-Hurtado ◽  
...  

Multiple transcription factors have been shown to promote pancreatic β-cell differentiation, yet much less is known about negative regulators. Earlier epigenomic studies suggested that the transcriptional repressor REST could be a suppressor of endocrinogenesis in the embryonic pancreas. However, pancreatic Rest knockout mice failed to show abnormal numbers of endocrine cells, suggesting that REST is not a major regulator of endocrine differentiation. Using a different conditional allele that enables profound REST inactivation, we observed a marked increase in pancreatic endocrine cell formation. REST inhibition also promoted endocrinogenesis in zebrafish and mouse early postnatal ducts and induced β-cell-specific genes in human adult duct-derived organoids. We also defined genomic sites that are bound and repressed by REST in the embryonic pancreas. Our findings show that REST-dependent inhibition ensures a balanced production of endocrine cells from embryonic pancreatic progenitors.


2021 ◽  
Vol 22 (13) ◽  
pp. 6713
Author(s):  
Romana Bohuslavova ◽  
Ondrej Smolik ◽  
Jessica Malfatti ◽  
Zuzana Berkova ◽  
Zaneta Novakova ◽  
...  

Diabetes is a metabolic disease that involves the death or dysfunction of the insulin-secreting β cells in the pancreas. Consequently, most diabetes research is aimed at understanding the molecular and cellular bases of pancreatic development, islet formation, β-cell survival, and insulin secretion. Complex interactions of signaling pathways and transcription factor networks regulate the specification, growth, and differentiation of cell types in the developing pancreas. Many of the same regulators continue to modulate gene expression and cell fate of the adult pancreas. The transcription factor NEUROD1 is essential for the maturation of β cells and the expansion of the pancreatic islet cell mass. Mutations of the Neurod1 gene cause diabetes in humans and mice. However, the different aspects of the requirement of NEUROD1 for pancreas development are not fully understood. In this study, we investigated the role of NEUROD1 during the primary and secondary transitions of mouse pancreas development. We determined that the elimination of Neurod1 impairs the expression of key transcription factors for α- and β-cell differentiation, β-cell proliferation, insulin production, and islets of Langerhans formation. These findings demonstrate that the Neurod1 deletion altered the properties of α and β endocrine cells, resulting in severe neonatal diabetes, and thus, NEUROD1 is required for proper activation of the transcriptional network and differentiation of functional α and β cells.


Author(s):  
Wojciech J. Szlachcic ◽  
Natalia Ziojla ◽  
Dorota K. Kizewska ◽  
Marcelina Kempa ◽  
Malgorzata Borowiak

A chronic inability to maintain blood glucose homeostasis leads to diabetes, which can damage multiple organs. The pancreatic islets regulate blood glucose levels through the coordinated action of islet cell-secreted hormones, with the insulin released by β-cells playing a crucial role in this process. Diabetes is caused by insufficient insulin secretion due to β-cell loss, or a pancreatic dysfunction. The restoration of a functional β-cell mass might, therefore, offer a cure. To this end, major efforts are underway to generate human β-cells de novo, in vitro, or in vivo. The efficient generation of functional β-cells requires a comprehensive knowledge of pancreas development, including the mechanisms driving cell fate decisions or endocrine cell maturation. Rapid progress in single-cell RNA sequencing (scRNA-Seq) technologies has brought a new dimension to pancreas development research. These methods can capture the transcriptomes of thousands of individual cells, including rare cell types, subtypes, and transient states. With such massive datasets, it is possible to infer the developmental trajectories of cell transitions and gene regulatory pathways. Here, we summarize recent advances in our understanding of endocrine pancreas development and function from scRNA-Seq studies on developing and adult pancreas and human endocrine differentiation models. We also discuss recent scRNA-Seq findings for the pathological pancreas in diabetes, and their implications for better treatment.


2021 ◽  
Author(s):  
Meritxell Rovira ◽  
Goutham Atla ◽  
Miguel Angel Maestro ◽  
Vane Grau ◽  
Javier García-Hurtado ◽  
...  

SUMMARYUnderstanding genomic regulatory mechanisms of pancreas differentiation is relevant to the pathophysiology of diabetes mellitus, and to the development of replacement therapies. Numerous transcription factors promote β cell differentiation, although less is known about negative regulators. Earlier epigenomic studies suggested that the transcriptional repressor REST could be a suppressor of endocrine gene programs in the embryonic pancreas. However, pancreaticRestknock-out mice failed to show increased numbers of endocrine cells, suggesting that REST is not a major regulator of endocrine differentiation. Using a different conditional allele that enables profound REST inactivation, we now observe a marked increase in the formation of pancreatic endocrine cells. REST inhibition also promoted endocrinogenesis in zebrafish and mouse early postnatal ducts, and induced β-cell specific genes in human adult duct-derived organoids. Finally, we define REST genomic programs that suppress pancreatic endocrine differentiation. These results establish a crucial role of REST as a negative regulator of pancreatic endocrine differentiation.


Author(s):  
Lina Sui ◽  
Yurong Xin ◽  
Qian Du ◽  
Daniela Georgieva ◽  
Giacomo Diedenhofen ◽  
...  

Author(s):  
Silvia Pellegrini ◽  
Giovanni B Pipitone ◽  
Alessandro Cospito ◽  
Fabio Manenti ◽  
Gaia Poggi ◽  
...  

Abstract Context MODY8 is a rare form of monogenic diabetes characterized by a mutation in CEL (carboxyl-ester-lipase) gene, which leads to exocrine pancreas dysfunction, followed by β cell failure. Induced pluripotent stem cells can differentiate into functional β cells. Thus, β cells from MODY8 patients can be generated in vitro and used for disease modelling and cell replacement therapy. Design and results A genetic study was performed in a patient suspected of monogenic diabetes. A novel heterozygous pathogenic variant in CEL (c.1818delC) was identified in the Proband, allowing diagnosis of MODY8. Three MODY8-iPSC clones were reprogrammed from skin fibroblasts of the patient, and their pluripotency and genomic stability confirmed. All three MODY8-iPSC differentiated into β cells following developmental stages. MODY8-iPSC-derived β cells were able to secrete insulin upon glucose dynamic perifusion. CEL gene was not expressed in iPSC nor during any steps of endocrine differentiation. Conclusions iPSC lines from a MODY8 patient with a novel pathogenic variant in the CEL gene were generated, they are capable of differentiation into endocrine cell and β cell function is preserved in mutated cells. These results set the basis for in vitro modelling of the disease and potentially for autologous β cell replacement.


Author(s):  
Mugdha V. Joglekar ◽  
Rohan R. Patil ◽  
Sarang N. Satoor ◽  
Wilson K. M. Wong ◽  
Mahesh S. Karandikar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document