Aneuploidy and Heterogeneity Mechanisms in Human Colorectal Tumor Progression

Author(s):  
Walter Giaretti
2018 ◽  
Vol 115 (17) ◽  
pp. E4061-E4070 ◽  
Author(s):  
Bastian Dörsam ◽  
Nina Seiwert ◽  
Sebastian Foersch ◽  
Svenja Stroh ◽  
Georg Nagel ◽  
...  

Colorectal cancer (CRC) is one of the most common tumor entities, which is causally linked to DNA repair defects and inflammatory bowel disease (IBD). Here, we studied the role of the DNA repair protein poly(ADP-ribose) polymerase-1 (PARP-1) in CRC. Tissue microarray analysis revealed PARP-1 overexpression in human CRC, correlating with disease progression. To elucidate its function in CRC, PARP-1 deficient (PARP-1−/−) and wild-type animals (WT) were subjected to azoxymethane (AOM)/ dextran sodium sulfate (DSS)-induced colorectal carcinogenesis. Miniendoscopy showed significantly more tumors in WT than in PARP-1−/− mice. Although the lack of PARP-1 moderately increased DNA damage, both genotypes exhibited comparable levels of AOM-induced autophagy and cell death. Interestingly, miniendoscopy revealed a higher AOM/DSS-triggered intestinal inflammation in WT animals, which was associated with increased levels of innate immune cells and proinflammatory cytokines. Tumors in WT animals were more aggressive, showing higher levels of STAT3 activation and cyclin D1 up-regulation. PARP-1−/− animals were then crossed with O6-methylguanine-DNA methyltransferase (MGMT)-deficient animals hypersensitive to AOM. Intriguingly, PARP-1−/−/MGMT−/− double knockout (DKO) mice developed more, but much smaller tumors than MGMT−/− animals. In contrast to MGMT-deficient mice, DKO animals showed strongly reduced AOM-dependent colonic cell death despite similar O6-methylguanine levels. Studies with PARP-1−/− cells provided evidence for increased alkylation-induced DNA strand break formation when MGMT was inhibited, suggesting a role of PARP-1 in the response to O6-methylguanine adducts. Our findings reveal PARP-1 as a double-edged sword in colorectal carcinogenesis, which suppresses tumor initiation following DNA alkylation in a MGMT-dependent manner, but promotes inflammation-driven tumor progression.


2016 ◽  
Vol 146 (suppl_1) ◽  
Author(s):  
Virginia Duncan ◽  
Deniz Peker

2001 ◽  
Author(s):  
S. Fu ◽  
Chee T. Chia ◽  
C. L. Tang ◽  
Cheong Hoong Diong ◽  
Francis C. Seow

2007 ◽  
Vol 5 (5) ◽  
pp. 461-471 ◽  
Author(s):  
Michiel F.G. de Maat ◽  
Naoyuki Umetani ◽  
Eiji Sunami ◽  
Roderick R. Turner ◽  
Dave S.B. Hoon

2003 ◽  
Vol 37 (4) ◽  
pp. 369-380 ◽  
Author(s):  
Helen E. Alcock ◽  
Timothy J. Stephenson ◽  
Janice A. Royds ◽  
David W. Hammond

2018 ◽  
pp. canres.2296.2017 ◽  
Author(s):  
Avi Levin ◽  
Adi Minis ◽  
Gadi Lalazar ◽  
Jose Rodriguez ◽  
Hermann Steller

2012 ◽  
Vol 29 (1) ◽  
pp. 73-78 ◽  
Author(s):  
CLARISSE EVENO ◽  
JEAN-OLIVIER CONTRERES ◽  
PATRICIA HAINAUD ◽  
JUDITH NEMETH ◽  
EVELYNE DUPUY ◽  
...  

2009 ◽  
Vol 136 (1) ◽  
pp. 206-216 ◽  
Author(s):  
Miki Ohta ◽  
Motoko Seto ◽  
Hideaki Ijichi ◽  
Koji Miyabayashi ◽  
Yotaro Kudo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document