gtpase activating protein
Recently Published Documents


TOTAL DOCUMENTS

1019
(FIVE YEARS 128)

H-INDEX

91
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Shahan Mamoor

Women diagnosed with triple negative breast cancer are predicted to benefit neither from endocrine therapy nor from HER2-targeted therapies (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding Rac GTPase activating protein 1, RACGAP1, when comparing the tumor cells of patients with triple negative breast cancer to normal mammary ductal cells (2). RACGAP1 was also differentially expressed in bulk tumor in human breast cancer (3). RACGAP1 mRNA was present at significantly increased quantities in TNBC tumor cells relative to normal mammary ductal cells. Analysis of human survival data revealed that expression of RACGAP1 in primary tumors of the breast was correlated with overall survival in patients with luminal A and HER2+ type cancer, while within triple negative breast cancer, primary tumor expression of RACGAP1 was correlated with distant metastasis-free survival in patients with immunomodulatory, mesenchymal stem-like, and luminal androgen receptor subtype disease. RACGAP1 may be of relevance to initiation, maintenance or progression of triple negative breast cancers.


2021 ◽  
Author(s):  
Meng Shi ◽  
Hieng Chiong Tie ◽  
Divyanshu Mahajan ◽  
Xiuping Sun ◽  
Yan Zhou ◽  
...  

The hallmark event of the canonical transforming growth factor β (TGFβ) family signaling is the assembly of the Smad-complex, consisting of the common Smad, Smad4, and phosphorylated receptor-regulated Smads. How the Smad-complex is assembled and regulated is still unclear. Here, we report that active Arl15, an Arf-like small G protein, specifically binds to the MH2 domain of Smad4 and colocalizes with Smad4 at the endolysosome. The binding relieves the autoinhibition of Smad4, which is imposed by the intramolecular interaction between its MH1 and MH2 domains. Activated Smad4 subsequently interacts with phosphorylated receptor-regulated Smads, forming the Smad-complex. Our observations suggest that Smad4 functions as an effector and a GTPase activating protein (GAP) of Arl15. Assembly of the Smad-complex enhances the GAP activity of Smad4 toward Arl15, therefore dissociating Arl15 before the nuclear translocation of the Smad-complex. Our data further demonstrate that Arl15 positively regulates the TGFβ family signaling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yumeng Peng ◽  
Qiang Zeng ◽  
Luming Wan ◽  
Enhao Ma ◽  
Huilong Li ◽  
...  

AbstractThe prevalence of non-obese nonalcoholic fatty liver disease (NAFLD) is increasing worldwide with unclear etiology and pathogenesis. Here, we show GP73, a Golgi protein upregulated in livers from patients with a variety of liver diseases, exhibits Rab GTPase-activating protein (GAP) activity regulating ApoB export. Upon regular-diet feeding, liver-GP73-high mice display non-obese NAFLD phenotype, characterized by reduced body weight, intrahepatic lipid accumulation, and gradual insulin resistance development, none of which can be recapitulated in liver-GAP inactive GP73-high mice. Common and specific gene expression signatures associated with GP73-induced non-obese NAFLD and high-fat diet (HFD)-induced obese NAFLD are revealed. Notably, metformin inactivates the GAP activity of GP73 and alleviates GP73-induced non-obese NAFLD. GP73 is pathologically elevated in NAFLD individuals without obesity, and GP73 blockade improves whole-body metabolism in non-obese NAFLD mouse model. These findings reveal a pathophysiological role of GP73 in triggering non-obese NAFLD and may offer an opportunity for clinical intervention.


2021 ◽  
Author(s):  
Shahan Mamoor

Breast cancer affects women at relatively high frequency (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding Rho GTPase-activating protein 20, ARHGAP20, when comparing primary tumors of the breast to the tissue of origin, the normal breast. ARHGAP20 mRNA was present at significantly lower quantities in tumors of the breast as compared to normal breast tissue. Analysis of human survival data revealed that expression of ARHGAP20 in primary tumors of the breast was correlated with overall survival in patients with HER2+ subtype cancer, demonstrating a relationship between primary tumor expression of a differentially expressed gene and patient survival outcomes influenced by PAM50 molecular subtype. ARHGAP20 may be of relevance to initiation, maintenance or progression of cancers of the female breast.


2021 ◽  
Author(s):  
Shu Hiragi ◽  
Takahide Matsui ◽  
Yuriko Sakamaki ◽  
Mitsunori Fukuda

Endosome maturation is essential for efficient degradation of internalized extracellular molecules and plasma membrane proteins. Two Rab GTPases, Rab5 and Rab7, are known to regulate endosome maturation, and a Rab5-to-Rab7 conversion mediated by a Rab7 activator, Mon1-Ccz1, is essential for progression of the maturation process. However, the importance and mechanism of Rab5 inactivation during endosome maturation is poorly understood. Here we report a novel Rab5 inactivator (Rab5-GTPase activating protein [Rab5-GAP]), TBC1D18, which is associated with Mon1 and mediates endosome maturation. We found that Rab5 hyperactivation in addition to Rab7 inactivation occurs in the absence of Mon1. We present evidence showing that the severe defects in endosome maturation observed in Mon1-KO cells are attributable to Rab5 hyperactivation rather than to Rab7 inactivation. We then identified TBC1D18 as a Rab5-GAP by comprehensive screening of TBC-domain-containing Rab-GAPs. Expression of TBC1D18 in Mon1-KO cells rescued the defects in endosome maturation, whereas its depletion attenuated endosome formation and degradation of endocytosed cargos. Moreover, TBC1D18 was found to be able to interact with Mon1, and it localized in close proximity to lysosomes in a Mon1-dependent manner. Thus, TBC1D18 is a crucial regulator of endosome maturation that functions together with Mon1.


Author(s):  
Lingye Zhang ◽  
Anni Zhou ◽  
Shengtao Zhu ◽  
Li Min ◽  
Si Liu ◽  
...  

AbstractRho GTPases are molecular switches that play an important role in regulating the behavior of a variety of tumor cells. RhoA GTPase-activating protein 26 (ARHGAP26) is a GTPase-activating protein and inhibits the activity of Rho GTPases by promoting the hydrolytic ability of Rho GTPases. It also affects tumorigenesis and progression of various tumors through several methods, including formation of abnormal fusion genes and circular RNA. This review summarizes the biological functions and molecular mechanisms of ARHGAP26 in different tumors, proposes the potential clinical value of ARHGAP26 in cancer treatment, and discusses current issues that need to be addressed.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hua He ◽  
Jingjing Huang ◽  
Sufang Wu ◽  
Shiyao Jiang ◽  
Lu Liang ◽  
...  

AbstractGTPase-activating protein (GAP) is a negative regulator of GTPase protein that is thought to promote the conversion of the active GTPase-GTP form to the GTPase-GDP form. Based on its ability to regulate GTPase proteins and other domains, GAPs are directly or indirectly involved in various cell requirement processes. We reviewed the existing evidence of GAPs regulating regulated cell death (RCD), mainly apoptosis and autophagy, as well as some novel RCDs, with particular attention to their association in diseases, especially cancer. We also considered that GAPs could affect tumor immunity and attempted to link GAPs, RCD and tumor immunity. A deeper understanding of the GAPs for regulating these processes could lead to the discovery of new therapeutic targets to avoid pathologic cell loss or to mediate cancer cell death.


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1530
Author(s):  
Jesse C. Patterson ◽  
Louise S. Goupil ◽  
Jeremy Thorner

Eukaryotes utilize distinct mitogen/messenger-activated protein kinase (MAPK) pathways to evoke appropriate responses when confronted with different stimuli. In yeast, hyperosmotic stress activates MAPK Hog1, whereas mating pheromones activate MAPK Fus3 (and MAPK Kss1). Because these pathways share several upstream components, including the small guanosine-5′-triphosphate phosphohydrolase (GTPase) cell-division-cycle-42 (Cdc42), mechanisms must exist to prevent inadvertent cross-pathway activation. Hog1 activity is required to prevent crosstalk to Fus3 and Kss1. To identify other factors required to maintain signaling fidelity during hypertonic stress, we devised an unbiased genetic selection for mutants unable to prevent such crosstalk even when active Hog1 is present. We repeatedly isolated truncated alleles of RGA1, a Cdc42-specific GTPase-activating protein (GAP), each lacking its C-terminal catalytic domain, that permit activation of the mating MAPKs under hyperosmotic conditions despite Hog1 being present. We show that Rga1 down-regulates Cdc42 within the high-osmolarity glycerol (HOG) pathway, but not the mating pathway. Because induction of mating pathway output via crosstalk from the HOG pathway takes significantly longer than induction of HOG pathway output, our findings suggest that, under normal conditions, Rga1 contributes to signal insulation by limiting availability of the GTP-bound Cdc42 pool generated by hypertonic stress. Thus, Rga1 action contributes to squelching crosstalk by imposing a type of “kinetic proofreading”. Although Rga1 is a Hog1 substrate in vitro, we eliminated the possibility that its direct Hog1-mediated phosphorylation is necessary for its function in vivo. Instead, we found first that, like its paralog Rga2, Rga1 is subject to inhibitory phosphorylation by the S. cerevisiae cyclin-dependent protein kinase 1 (Cdk1) ortholog Cdc28 and that hyperosmotic shock stimulates its dephosphorylation and thus Rga1 activation. Second, we found that Hog1 promotes Rga1 activation by blocking its Cdk1-mediated phosphorylation, thereby allowing its phosphoprotein phosphatase 2A (PP2A)-mediated dephosphorylation. These findings shed light on why Hog1 activity is required to prevent crosstalk from the HOG pathway to the mating pheromone response pathway.


2021 ◽  
Author(s):  
Shahan Mamoor

We mined published microarray data (1) to understand the most significant gene expression differences in the tumors of triple negative breast cancer patients based on survival following treatment: dead or alive. We observed significant transcriptome-wide differential expression of Rho GTPase activating protein 15, encoded by ARHGAP15 when comparing the primary tumors of triple negative breast cancer patients dead or alive. Importantly, ARHGAP15 expression was correlated with overall survival in basal subtype breast cancer, a molecular subtype sharing significant overlap with triple negative breast cancer. ARHGAP15 may be of relevance as a biomarker or as a molecule of interest in understanding the etiology or progression of triple negative breast cancer.


Sign in / Sign up

Export Citation Format

Share Document