intestinal inflammation
Recently Published Documents


TOTAL DOCUMENTS

4078
(FIVE YEARS 1484)

H-INDEX

135
(FIVE YEARS 22)

2022 ◽  
Vol 8 ◽  
Author(s):  
Qing Duanmu ◽  
Bie Tan ◽  
Jing Wang ◽  
Bo Huang ◽  
Jianjun Li ◽  
...  

Dietary supplementation with aromatic amino acids (AAAs) has been demonstrated to alleviate intestinal inflammation induced by lipopolysaccharide (LPS) in the piglets. But the mechanism of AAA sensing and utilization under inflammatory conditions is not well-understood. The study was conducted with 32 weanling piglets using a 2 × 2 factorial arrangement (diet and LPS challenge) in a randomized complete block design. Piglets were fed as basal diet or the basal diet supplemented with 0.16% tryptophan (Trp), 0.41% phenylalanine (Phe), and 0.22% tyrosine (Tyr) for 21 days. The results showed that LPS treatment significantly reduced the concentrations of cholecystokinin (CCK) and total protein but increased leptin concentration, the activities of alanine transaminase, and aspartate aminotransferase in serum. Dietary supplementation with AAAs significantly increased the serum concentrations of CCK, peptide YY (PYY), and total protein but decreased the blood urea nitrogen. LPS challenge reduced the ileal threonine (Thr) digestibility, as well as serum isoleucine (Ile) and Trp concentrations, but increased the serum concentrations of Phe, Thr, histidine (His), alanine (Ala), cysteine (Cys), and serine (Ser) (P < 0.05). The serum-free amino acid concentrations of His, lysine (Lys), arginine (Arg), Trp, Tyr, Cys, and the digestibilities of His, Lys, Arg, and Cys were significantly increased by feeding AAA diets (P < 0.05). Dietary AAA supplementation significantly increased the serum concentrations of Trp in LPS-challenged piglets (P < 0.05). In the jejunal mucosa, LPS increased the contents of Ala and Cys, and the mRNA expressions of solute carrier (SLC) transporters (i.e., SLC7A11, SLC16A10, SLC38A2, and SLC3A2), but decreased Lys and glutamine (Gln) contents, and SLC1A1 mRNA expression (P < 0.05). In the ileal mucosa, LPS challenge induced increasing in SLC7A11 and SLC38A2 and decreasing in SLC38A9 and SLC36A1 mRNA expressions, AAAs supplementation significantly decreased mucosal amino acid (AA) concentrations of methionine (Met), Arg, Ala, and Tyr, etc. (P < 0.05). And the interaction between AAAs supplementation and LPS challenge significantly altered the expressions of SLC36A1 and SLC38A9 mRNA (P < 0.05). Together, these findings indicated that AAAs supplementation promoted the AAs absorption and utilization in the small intestine of piglets and increased the mRNA expressions of SLC transports to meet the high demands for specific AAs in response to inflammation and immune response.


2022 ◽  
Vol 23 (2) ◽  
pp. 920
Author(s):  
David Hutin ◽  
Karoline Alvik Hagen ◽  
Peng Shao ◽  
Kim Sugamori ◽  
Denis M. Grant ◽  
...  

Poly-ADP-ribose polymerases (PARPs) are important regulators of the immune system, including TCDD-inducible poly-ADP-ribose polymerase (TIPARP), also known as poly-ADP-ribose polymerase 7 (PARP7). PARP7 negatively regulates aryl hydrocarbon receptor (AHR) and type I interferon (IFN-I) signaling, both of which have been implicated in intestinal homeostasis and immunity. Since the loss of PARP7 expression increases AHR and IFN-I signaling, we used a murine dextran sulfate sodium (DSS)-induced colitis model to investigate the effect of PARP7 loss on DSS-induced intestinal inflammation. DSS-exposed Parp7−/− mice had less body weight loss, lower disease index scores, and reduced expression of several inflammation genes, including interleukin IL-6, C-x-c motif chemokine ligand 1 (Cxcl1), and lipocalin-2, when compared with wild-type mice. However, no significant difference was observed between genotypes in the colonic expression of the AHR target gene cytochrome P450 1A1 (Cyp1a1). Moreover, no significant differences in microbial composition were observed between the genotypes. Our findings demonstrate that the absence of PARP7 protein results in an impaired immune response to colonic inflammation and suggests that PARP7 may participate in the recruitment of immune cells to the inflammation site, which may be due to its role in IFN-I signaling rather than AHR signaling.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Fang Dong ◽  
Fangfei Xiao ◽  
Xiaolu Li ◽  
Youran Li ◽  
Xufei Wang ◽  
...  

Abstract Background Compelling evidences demonstrated that gut microbiota dysbiosis plays a critical role in the pathogenesis of inflammatory bowel diseases (IBD). Therapies for targeting the microbiota may provide alternative options for the treatment of IBD, such as probiotics. Here, we aimed to investigate the protective effect of a probiotic strain, Pediococcus pentosaceus (P. pentosaceus) CECT 8330, on dextran sulfate sodium (DSS)-induced colitis in mice. Methods C57BL/6 mice were administered phosphate-buffered saline (PBS) or P. pentosaceus CECT 8330 (5 × 108 CFU/day) once daily by gavage for 5 days prior to or 2 days after colitis induction by DSS. Weight, fecal conditions, colon length and histopathological changes were examined. ELISA and flow cytometry were applied to determine the cytokines and regulatory T cells (Treg) ratio. Western blot was used to examine the tight junction proteins (TJP) in colonic tissues. Fecal short-chain fatty acids (SCFAs) levels and microbiota composition were analyzed by targeted metabolomics and 16S rRNA gene sequencing, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of orthologous groups of proteins (COG) pathway analysis were used to predict the microbial functional profiles. Results P. pentosaceus CECT 8330 treatment protected DSS-induced colitis in mice as evidenced by reducing the weight loss, disease activity index (DAI) score, histological damage, and colon length shortening. P. pentosaceus CECT 8330 decreased the serum levels of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), and increased level of IL-10 in DSS treated mice. P. pentosaceus CECT 8330 upregulated the expression of ZO-1, Occludin and the ratio of Treg cells in colon tissue. P. pentosaceus CECT 8330 increased the fecal SCFAs level and relative abundances of several protective bacteria genera, including norank_f_Muribaculaceae, Lactobacillus, Bifidobacterium, and Dubosiella. Furthermore, the increased abundances of bacteria genera were positively correlated with IL-10 and SCFAs levels, and negatively associated with IL-6, IL-1β, and TNF-α, respectively. The KEGG and COG pathway analysis revealed that P. pentosaceus CECT 8330 could partially recover the metabolic pathways altered by DSS. Conclusions P. pentosaceus CECT 8330 administration protects the DSS-induced colitis and modulates the gut microbial composition and function, immunological profiles, and the gut barrier function. Therefore, P. pentosaceus CECT 8330 may serve as a promising probiotic to ameliorate intestinal inflammation.


2022 ◽  
Author(s):  
Camille Danne ◽  
Chloe Michaudel ◽  
Jurate Skerniskyte ◽  
Julien Planchais ◽  
Aurelie Magniez ◽  
...  

Objectives: Inflammatory bowel disease (IBD) results from a combination of genetic predisposition, dysbiosis of the gut microbiota and environmental factors, leading to alterations in the gastrointestinal immune response and chronic inflammation. Caspase recruitment domain 9 (Card9), one of the IBD susceptibility genes, has been shown to protect against intestinal inflammation and fungal infection. However, the cell types and mechanisms involved in the CARD9 protective role against inflammation remain unknown. Design: We used dextran sulfate sodium (DSS)-induced and adoptive transfer colitis models in total and conditional CARD9 knock-out mice to uncover which cell types play a role in the CARD9 protective phenotype. The impact of Card9 deletion on neutrophil function was assessed by an in vivo model of fungal infection and various functional assays, including endpoint dilution assay, apoptosis assay by flow cytometry, proteomics and real time bioenergetic profile analysis (Seahorse). Results: Lymphocytes are not intrinsically involved in the CARD9 protective role against colitis. CARD9 expression in neutrophils, but not in epithelial or CD11c+ cells, protects against DSS-induced colitis. In the absence of CARD9, mitochondrial dysfunction in neutrophils leads to their premature death through apoptosis, especially in oxidative environment. The decrease of fonctional neutrophils in tissues could explain the impaired containment of fungi and increased susceptibility to intestinal inflammation. Conclusion: These results provide new insight into the role of CARD9 in neutrophil mitochondrial function and its involvement in intestinal inflammation, paving the way for new therapeutic strategies targeting neutrophils.


2022 ◽  
Vol 12 ◽  
Author(s):  
Niels C. Lory ◽  
Mikolaj Nawrocki ◽  
Martina Corazza ◽  
Joanna Schmid ◽  
Valéa Schumacher ◽  
...  

Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.


Pathobiology ◽  
2022 ◽  
pp. 1-11
Author(s):  
Omar Bushara ◽  
David Joseph Escobar ◽  
Samuel Edward Weinberg ◽  
Leyu Sun ◽  
Jie Liao ◽  
...  

<b><i>Background:</i></b> Crohn’s disease (CD) is a condition on the spectrum of inflammatory bowel disease that affects up to 20 people per 100,000 in the US annually, and with incidence increasing. One of the most significant sources of morbidity in CD is the formation of strictures, with resultant intestinal blockage a common indication for hospitalization and surgical intervention in these patients. The pathophysiology of stricture formation is not fully understood. However, the fibroplasia that leads to fibrostenotic stricture formation may have shared pathophysiology with IgG4-related fibrosis. <b><i>Summary:</i></b> Initial intestinal inflammation recruits innate immune cells, such as neutrophils, that secrete IL-1β and IL-23, which induces a type 17 CD4+ T-helper T-cell (Th17)-mediated adaptive immune response. These CD4+ Th17 T cells also contribute to inflammation by secreting proinflammatory cytokines such as IL-17 and IL-21. IL-21 recruits and stimulates CD4+ T follicular helper (Tfh) cells, which secrete more IL-21. This causes ectopic germinal center formation, recruiting and stimulating naïve B cells. The IL-17 and IL-21 produced by Th17 cells and Tfh cells also induce IgG4 plasmablast differentiation. Finally, these IgG4-producing plasmablasts secrete platelet-derived growth factor (PDGF), which activates local PDGF-receptor expressing fibroblasts and myofibroblasts, resulting in uncontrolled fibroplasia.


2022 ◽  
Vol 15 ◽  
Author(s):  
April S. Caravaca ◽  
Yaakov A. Levine ◽  
Anna Drake ◽  
Michael Eberhardson ◽  
Peder S. Olofsson

Crohn’s disease is a chronic, idiopathic condition characterized by intestinal inflammation and debilitating gastrointestinal symptomatology. Previous studies of inflammatory bowel disease (IBD), primarily in colitis, have shown reduced inflammation after electrical or pharmacological activation of the vagus nerve, but the scope and kinetics of this effect are incompletely understood. To investigate this, we studied the effect of electrical vagus nerve stimulation (VNS) in a rat model of indomethacin-induced small intestinal inflammation. 1 min of VNS significantly reduced small bowel total inflammatory lesion area [(mean ± SEM) sham: 124 ± 14 mm2, VNS: 62 ± 14 mm2, p = 0.002], intestinal peroxidation and chlorination rates, and intestinal and systemic pro-inflammatory cytokine levels as compared with sham-treated animals after 24 h following indomethacin administration. It was not known whether this observed reduction of inflammation after VNS in intestinal inflammation was mediated by direct innervation of the gut or if the signals are relayed through the spleen. To investigate this, we studied the VNS effect on the small bowel lesions of splenectomized rats and splenic nerve stimulation (SNS) in intact rats. We observed that VNS reduced small bowel inflammation also in splenectomized rats but SNS alone failed to significantly reduce small bowel lesion area. Interestingly, VNS significantly reduced small bowel lesion area for 48 h when indomethacin administration was delayed. Thus, 1 min of electrical activation of the vagus nerve reduced indomethacin-induced intestinal lesion area by a spleen-independent mechanism. The surprisingly long-lasting and spleen-independent effect of VNS on the intestinal response to indomethacin challenge has important implications on our understanding of neural control of intestinal inflammation and its potential translation to improved therapies for IBD.


2022 ◽  
Vol 7 ◽  
pp. 11
Author(s):  
Isabelle Williams ◽  
Sumeet Pandey ◽  
Wolfram Haller ◽  
Hein Q. Huynh ◽  
Alicia Chan ◽  
...  

Background:  Blockade of tumour necrosis factor (anti-TNF) is effective in patients with Crohn’s Disease but has been associated with infection risk and neurological complications such as demyelination. Niemann-Pick disease Type C1 (NPC1) is a lysosomal storage disorder presenting in childhood with neurological deterioration, liver damage and respiratory infections. Some NPC1 patients develop severe Crohn’s disease. Our objective was to investigate the safety and effectiveness of anti-TNF in NPC1 patients with Crohn’s disease. Methods: Retrospective data on phenotype and therapy response were collected in 2019-2020 for the time period 2014 to 2020 from patients in the UK, France, Germany and Canada with genetically confirmed NPC1 defects and intestinal inflammation. We investigated TNF secretion in peripheral blood mononuclear cells treated with NPC1 inhibitor in response to bacterial stimuli. Results: NPC1 inhibitor treated peripheral blood mononuclear cells (PBMCs) show significantly increased TNF production after lipopolysaccharide or bacterial challenge providing a rationale for anti-TNF therapy. We identified 4 NPC1 patients with Crohn’s disease (CD)-like intestinal inflammation treated using anti-TNF therapy (mean age of onset 8.1 years, mean treatment length 27.75 months, overall treatment period 9.25 patient years). Anti-TNF therapy was associated with reduced gastrointestinal symptoms with no apparent adverse neurological events. Therapy improved intestinal inflammation in 4 patients. Conclusions: Anti-TNF therapy appears safe in patients with NPC1 and is an effective treatment strategy for the management of intestinal inflammation in these patients.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Agnieszka Dąbek-Drobny ◽  
Olga Kaczmarczyk ◽  
Michał Woźniakiewicz ◽  
Paweł Paśko ◽  
Justyna Dobrowolska-Iwanek ◽  
...  

Disturbances in the production of bacterial metabolites in the intestine have been reported in diseases associated with dysbiosis, such as inflammatory bowel diseases (IBDs) that include two conditions: Crohn disease (CD) and ulcerative colitis (UC). Short-chain fatty acids (SCFAs) are the main dietary-fiber-derived bacterial metabolites associated with the course of intestinal inflammation. In this study, we assessed the relationship between body mass index (BMI), the type of diet used, and changes in fecal SCFA levels in patients with IBD. We performed nutritional assessments using a nutritional questionnaire and determined fecal SCFA levels in 43 patients with UC, 18 patients with CD, and 16 controls. Our results revealed that subjects with a BMI > 24.99 kg/m2 had higher levels of isobutyric acid, whereas those with a BMI < 18.5 kg/m2 had lower level of butyric, isovaleric, and propionic acids. Furthermore, we observed higher levels of valeric acid in controls than in IBD patients. We did not reveal a relationship between a specific SCFA and the type of diet, but eating habits appear to be related to the observed changes in the SCFA profile depending on BMI. In conclusion, we demonstrated that BMI is associated with SCFA levels in patients with IBD.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shorouk El Sayed ◽  
Izabel Patik ◽  
Naresh S. Redhu ◽  
Jonathan N. Glickman ◽  
Konstantinos Karagiannis ◽  
...  

AbstractMacrophages are a heterogeneous population of mononuclear phagocytes abundantly distributed throughout the intestinal compartments that adapt to microenvironmental specific cues. In adult mice, the majority of intestinal macrophages exhibit a mature phenotype and are derived from blood monocytes. In the steady-state, replenishment of these cells is reduced in the absence of the chemokine receptor CCR2. Within the intestine of mice with colitis, there is a marked increase in the accumulation of immature macrophages that demonstrate an inflammatory phenotype. Here, we asked whether CCR2 is necessary for the development of colitis in mice lacking the receptor for IL10. We compared the development of intestinal inflammation in mice lacking IL10RA or both IL10RA and CCR2. The absence of CCR2 interfered with the accumulation of immature macrophages in IL10R-deficient mice, including a novel population of rounded submucosal Iba1+ cells, and reduced the severity of colitis in these mice. In contrast, the absence of CCR2 did not reduce the augmented inflammatory gene expression observed in mature intestinal macrophages isolated from mice lacking IL10RA. These data suggest that both newly recruited CCR2-dependent immature macrophages and CCR2-independent residual mature macrophages contribute to the development of intestinal inflammation observed in IL10R-deficient mice.


Sign in / Sign up

Export Citation Format

Share Document