Quantum Field Theory of Kinks in Two-Dimensional Space-Time

Author(s):  
B. Schroer
2016 ◽  
Vol 31 (01) ◽  
pp. 1630001 ◽  
Author(s):  
L. D. Faddeev

The renormalizability of the Yang–Mills quantum field theory in four-dimensional space–time is discussed in the background field formalism.


1978 ◽  
Vol 18 (12) ◽  
pp. 4435-4459 ◽  
Author(s):  
T. S. Bunch ◽  
S. M. Christensen ◽  
S. A. Fulling

2001 ◽  
Vol 16 (10) ◽  
pp. 663-671
Author(s):  
TRISTAN HÜBSCH

The Hilbert spaces of supersymmetric systems admit symmetries which are often related to the topology and geometry of the (target) field-space. Here, we study certain (2, 2)-supersymmetric systems in two-dimensional space–time which are closely related to superstring models. They all turn out to possess some hitherto unexploited and geometrically and topologically unobstructed symmetries, providing new tools for studying the topology and geometry of superstring target space–times, and so the dynamics of the effective field theory in these.


2012 ◽  
Vol 27 (23) ◽  
pp. 1250136 ◽  
Author(s):  
MIGUEL-ANGEL SANCHIS-LOZANO ◽  
J. FERNANDO BARBERO G. ◽  
JOSÉ NAVARRO-SALAS

Motivated by the Goldbach conjecture in number theory and the Abelian bosonization mechanism on a cylindrical two-dimensional space–time, we study the reconstruction of a real scalar field as a product of two real fermion (so-called prime) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators [Formula: see text] — labeled by prime numbers p — acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allows us to prove that the theory is not renormalizable. We also comment on the potential consequences of this result concerning the validity or breakdown of the Goldbach conjecture for large integer numbers.


Sign in / Sign up

Export Citation Format

Share Document