The Elementary Acts of Morphogenesis: Processes of Biosynthesis of Informational Macromolecules. The Biochemical Mechanisms of Transfer of Genetic Information

Author(s):  
Zhores A. Medvedev
2020 ◽  
Vol 295 (52) ◽  
pp. 18406-18425
Author(s):  
Urmimala Basu ◽  
Alicia M. Bostwick ◽  
Kalyan Das ◽  
Kristin E. Dittenhafer-Reed ◽  
Smita S. Patel

Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.


2009 ◽  
Vol 42 (19) ◽  
pp. 11
Author(s):  
MARY ELLEN SCHNEIDER
Keyword(s):  

2011 ◽  
Vol 43 (6) ◽  
pp. 40-48 ◽  
Author(s):  
Nikita A. Gupal ◽  
Anatoliy M. Gupal ◽  
Alexey V. Ostrovskiy

2020 ◽  
Vol 63 (2) ◽  
pp. 46-62
Author(s):  
Suren T. Zolyan

We discuss the role of linguistic metaphors as a cognitive frame for the understanding of genetic information processing. The essential similarity between language and genetic information processing has been recognized since the very beginning, and many prominent scholars have noted the possibility of considering genes and genomes as texts or languages. Most of the core terms in molecular biology are based on linguistic metaphors. The processing of genetic information is understood as some operations on text – writing, reading and editing and their specification (encoding/decoding, proofreading, transcription, translation, reading frame). The concept of gene reading can be traced from the archaic idea of the equation of Life and Nature with the Book. Thus, the genetics itself can be metaphorically represented as some operations on text (deciphering, understanding, code-breaking, transcribing, editing, etc.), which are performed by scientists. At the same time linguistic metaphors portrayed gene entities also as having the ability of reading. In the case of such “bio-reading” some essential features similar to the processes of human reading can be revealed: this is an ability to identify the biochemical sequences based on their function in an abstract system and distinguish between type and its contextual tokens of the same type. Metaphors seem to be an effective instrument for representation, as they make possible a two-dimensional description: biochemical by its experimental empirical results and textual based on the cognitive models of comprehension. In addition to their heuristic value, linguistic metaphors are based on the essential characteristics of genetic information derived from its dual nature: biochemical by its substance, textual (or quasi-textual) by its formal organization. It can be concluded that linguistic metaphors denoting biochemical objects and processes seem to be a method of description and explanation of these heterogeneous properties.


2013 ◽  
Vol 44 (4) ◽  
pp. 72-80
Author(s):  
N. Leus ◽  
◽  
S. Kolomiichuk ◽  
Nizar Boudaya Nizar ◽  
A. Girzheva ◽  
...  

2020 ◽  
Vol 2 (4) ◽  
pp. 89-92
Author(s):  
Muhammad Amir ◽  
Sabeera Afzal ◽  
Alia Ishaq

Polymerases were revealed first in 1970s. Most important to the modest perception the enzyme responsible for nuclear DNA replication that was pol , for DNA repair pol and for mitochondrial DNA replication pol  DNA construction and renovation done by DNA polymerases, so directing both the constancy and discrepancy of genetic information. Replication of genome initiate with DNA template-dependent fusion of small primers of RNA. This preliminary phase in replication of DNA demarcated as de novo primer synthesis which is catalyzed by specified polymerases known as primases. Sixteen diverse DNA-synthesizing enzymes about human perspective are devoted to replication, reparation, mutilation lenience, and inconsistency of nuclear DNA. But in dissimilarity, merely one DNA polymerase has been called in mitochondria. It has been suggest that PrimPol is extremely acting the roles by re-priming DNA replication in mitochondria to permit an effective and appropriate way replication to be accomplished. Investigations from a numeral of test site have significantly amplified our appreciative of the role, recruitment and regulation of the enzyme during DNA replication. Though, we are simply just start to increase in value the versatile roles that play PrimPol in eukaryote.


Sign in / Sign up

Export Citation Format

Share Document