NMR Studies of Molecular Solids, Polymers and Glasses

Author(s):  
W. Müller-Warmuth
Keyword(s):  
1985 ◽  
Vol 82 ◽  
pp. 153-158 ◽  
Author(s):  
S.P. Velsko ◽  
R.M. Hochstrasser

1999 ◽  
Vol 96 (9/10) ◽  
pp. 1580-1584 ◽  
Author(s):  
I. Ségalas ◽  
S. Desjardins ◽  
H. Oulyadi ◽  
Y. Prigent ◽  
S. Tribouillard ◽  
...  

1994 ◽  
Vol 91 ◽  
pp. 697-703 ◽  
Author(s):  
B Gillet ◽  
BT Doan ◽  
C Verre-Sebrie ◽  
O Fedeli ◽  
JC Beloeil ◽  
...  

1980 ◽  
Vol 41 (C8) ◽  
pp. C8-32-C8-35
Author(s):  
Y. Nakamura ◽  
M. Niibe ◽  
M. Shimoji
Keyword(s):  

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1713-C8-1714
Author(s):  
K. Le Dang ◽  
P. Veillet ◽  
H. Sakakima ◽  
R. Krishnan
Keyword(s):  

1990 ◽  
Vol 63 (03) ◽  
pp. 499-504 ◽  
Author(s):  
A Electricwala ◽  
L Irons ◽  
R Wait ◽  
R J G Carr ◽  
R J Ling ◽  
...  

SummaryPhysico-chemical properties of recombinant desulphatohirudin expressed in yeast (CIBA GEIGY code No. CGP 39393) were reinvestigated. As previously reported for natural hirudin, the recombinant molecule exhibited abnormal behaviour by gel filtration with an apparent molecular weight greater than that based on the primary structure. However, molecular weight estimation by SDS gel electrophoresis, FAB-mass spectrometry and Photon Correlation Spectroscopy were in agreement with the theoretical molecular weight, with little suggestion of dimer or aggregate formation. Circular dichroism studies of the recombinant molecule show similar spectra at different pH values but are markedly different from that reported by Konno et al. (13) for a natural hirudin-variant. Our CD studies indicate the presence of about 60% beta sheet and the absence of alpha helix in the secondary structure of recombinant hirudin, in agreement with the conformation determined by NMR studies (17)


2003 ◽  
Vol 772 ◽  
Author(s):  
M. Schmid ◽  
C. Goze-Bac ◽  
M. Mehring ◽  
S. Roth ◽  
P. Bernier

AbstractLithium intercalted carbon nanotubes have attracted considerable interest as perspective components for energy storage devices. We performed 13C Nuclear Magnetic Resonance spin lattice relaxation measurements in a temperature range from 4 K up to 300 on alkali intercalated Single Walled Carbon Nanotubes in order to investigate the modifications of the electronic properties. The density of states at the Fermi level were determined for pristine, lithium and cesium intercalated carbon nanotubes and are discussed in terms of intercalation and charge transfer effects.


2019 ◽  
Author(s):  
Shengxian Cheng ◽  
Xiaoxia Ma, ◽  
Yonghe He ◽  
Jun He ◽  
Matthias Zeller ◽  
...  

We report a curious porous molecular crystal that is devoid of the common traits of related systems. Namely, the molecule does not rely on directional hydrogen bonds to enforce open packing; and it offers neither large concave faces (i.e., high internal free volume) to frustrate close packing, nor any inherently built-in cavity like in the class of organic cages. Instead, the permanent porosity (as unveiled by the X-ray crystal structure and CO<sub>2</sub> sorption studies) arises from the strong push-pull units built into a Sierpinski-like molecule that features four symmetrically backfolded (<b>SBF</b>) side arms. Each side arm consists of the 1,1,4,4-tetracyanobuta-1,3-diene acceptor (TCBD) coupled with the dimethylaminophenyl donor, which is conveniently installed by a cycloaddition-retroelectrocyclization (CA-RE) reaction. Unlike the poor/fragile crystalline order of many porous molecular solids, the molecule here readily crystallizes and the crystalline phase can be easily deposited into thin films from solutions. Moreover, both the bulk sample and thin film exhibit excellent thermal stability with the porous crystalline order maintained even at 200 °C. The intermolecular forces underlying this robust porous molecular crystal likely include the strong dipole interactions and the multiple C···N and C···O short contacts afforded by the strongly donating and accepting groups integrated within the rigid molecular scaffold.


Sign in / Sign up

Export Citation Format

Share Document