bulk sample
Recently Published Documents


TOTAL DOCUMENTS

393
(FIVE YEARS 99)

H-INDEX

24
(FIVE YEARS 5)

Author(s):  
Constantin Buyer ◽  
Samira A. Schumacher ◽  
Thomas Schleid

Abstract By adding a hot aqueous solution containing KF and K2[CO3] to another hot aquatic brine of Pr[NO3]3 ⋅ 5 H2O, Sm[NO3]3 ⋅ 5 H2O or Eu[NO3]3 ⋅ 5 H2O with a 1.3 times excess of the anion-providing solution, amorphous water-insoluble powders of PrF[CO3], SmF[CO3] and EuF[CO3] can be obtained. Through hydrothermal treatment at 210 °C for five days crystalline powders could be synthesized and their crystal structure was refined with Rietveld methods based on PXRD data. The named compounds crystallize in the bastnaesite-type structure with a = 710.912(12) pm, c = 976.811(6) pm for the praseodymium, a = 704.77(2) pm, c = 971.83(4) pm for the samarium and a = 700.734(6) pm, c = 969.066(8) pm for the europium compound, all hexagonal with Z = 6. Upon heating them, the compounds lose CO2 and fluoride oxides REFO emerge. Thermogravimetric experiments with crystalline samples show thermal stability up to 420 °C for PrF[CO3], 400 °C for SmF[CO3] and 340 °C for EuF[CO3], but decomposition below 200 °C for the amorphous ones. Infrared spectroscopy confirms only marginal portions of [OH]− instead of F− anions in all cases. The RE 3+ cations are coordinated by 9 + 2 anions at distances between 236 and 254 pm plus 326 pm to F− anions and oxygen atoms bonded to carbon as oxocarbonate anions [CO3]2−. Triggered by ultraviolet radiation, the bulk sample of EuF[CO3] shows a poor red luminescence.


Author(s):  
Виктор Михайлович Юров ◽  
Владимир Иванович Гончаренко ◽  
Владимир Станиславович Олешко ◽  
Сергей Алексеевич Гученко

В работе рассмотрены вопросы анизотропии поверхностного слоя и анизотропии поверхностной энергии кубических кристаллов рутения. В основе этого рассмотрения лежит эмпирическая модель атомарно-гладких кристаллов, толщина поверхностного слоя которых зависит от одного фундаментального параметра -атомного объема элемента. Расчеты кристаллов рутения показали, что толщина поверхностного слоя кристаллов рутения во всех направлениях не превышает d (I) < 10 нм и они представляют собой наноструктуру. Кристаллы рутенийалюминий, рутенийгафний, рутенийтитан, рутенийцирконий имеют ơ > 3 Дж/м в направлении (100) . Нами рассмотрена задача о диффузии газа в нанометровой пластине рутения. В отличие от классической задачи в полученном уравнении появляется логарифмический член. Это приводит к расходимости в начале координат. Поэтому граничные условия нужно задавать не при x = 0, а при x = d (0) - длине де Бройлевской волны электронов. Только в этом случае имеют смысл классические уравнения диффузии. Существенно также, что, согласно полученному уравнению, диффузии нанопластины зависит как от материала пластины через коэффициент диффузии массивного образца, так и от размерного фактора. В классическом случае такой зависимости нет. Для описания фазовых переходов в наноструктурах предложены различные модели, среди которых можно отметить метод среднего поля Ландау, в котором используется параметр порядка. Мы воспользуемся теорией Ландау, заменяя температуру T на координату h . The paper deals with the anisotropy of the surface layer and the anisotropy of the free surface energy of cubic ruthenium crystals. This consideration is based on an empirical model of atomically smooth crystals, the thickness of the surface layer of which depends on single fundamental parameter - the atomic volume of an element. Calculations of ruthenium crystals showed that the thickness of the surface layer of ruthenium crystals in all directions does not exceed d(I)< 10 nm and they represent a nanostructure. Crystals of ruthenium aluminum, ruthenium hafnium, ruthenium titanium, ruthenium zirconium have ơ > 3 J/m in the (100) direction. We have considered the problem of gas diffusion in a nanometer ruthenium plate. In contrast to the classical problem, a logarithmic term appears in the resulting equation. This leads to divergence at the origin. Therefore, the boundary conditions must be specified not at x = 0, but at x = d (0) - the de Broglie wavelength of electrons. Only in this case the classical diffusion equations are meaningful. It is also important that, according to the obtained equation, the diffusion of the nanoplate depends both on the material of the plate through the diffusion coefficient of the bulk sample and on the size factor. In the classical case, there is no such dependence. Various models have been proposed to describe phase transitions in nanostructures, among which we can mention the Landau mean field method, in which the order parameter is used. We will use Landau's theory, replacing the temperature T with the coordinate h.


2021 ◽  
Author(s):  
Chang Su ◽  
Jingfei Zhang ◽  
Hongyu Zhao

Inferring and characterizing gene co-expression networks have led to important insights on the molecular mechanisms and functional pathways in healthy and diseased individuals. Most co-expression analyses to date have been performed on gene expression data collected from bulk tissues with different cell type compositions across samples, resulting in co-expression estimates confounded by heterogeneity in cell type proportions. To address this limitation in co-expression analysis, we propose a flexible framework that estimates cell-type-specific gene co-expressions from bulk sample data, where the cell-type-specific distributions of gene expression levels are not assumed known. To overcome the computational challenge in estimating covariances and correlations from a convolution of high dimensional densities, we develop a novel thresholded least squares estimator, named CSNet, that is efficient to implement and has good theoretical properties. We further investigate the convergence rate of CSNet. The utility and efficacy of CSNet is demonstrated through simulation studies and an application to a gene co-expression study with bulk samples from Alzheimer's disease patients, where our analysis identified new cell-type-specific modules of AD risk genes.


Author(s):  
Toru Yada ◽  
Masanao Abe ◽  
Tatsuaki Okada ◽  
Aiko Nakato ◽  
Kasumi Yogata ◽  
...  

AbstractC-type asteroids1 are considered to be primitive small Solar System bodies enriched in water and organics, providing clues to the origin and evolution of the Solar System and the building blocks of life. C-type asteroid 162173 Ryugu has been characterized by remote sensing2–7 and on-asteroid measurements8,9 with Hayabusa2 (ref. 10). However, the ground truth provided by laboratory analysis of returned samples is invaluable to determine the fine properties of asteroids and other planetary bodies. We report preliminary results of analyses on returned samples from Ryugu of the particle size distribution, density and porosity, spectral properties and textural properties, and the results of a search for Ca–Al-rich inclusions (CAIs) and chondrules. The bulk sample mainly consists of rugged and smooth particles of millimetre to submillimetre size, confirming that the physical and chemical properties were not altered during the return from the asteroid. The power index of its size distribution is shallower than that of the surface boulder observed on Ryugu11, indicating differences in the returned Ryugu samples. The average of the estimated bulk densities of Ryugu sample particles is 1,282 ± 231 kg m−3, which is lower than that of meteorites12, suggesting a high microporosity down to the millimetre scale, extending centimetre-scale estimates from thermal measurements5,9. The extremely dark optical to near-infrared reflectance and spectral profile with weak absorptions at 2.7 and 3.4 μm imply a carbonaceous composition with indigenous aqueous alteration, matching the global average of Ryugu3,4 and confirming that the sample is representative of the asteroid. Together with the absence of submillimetre CAIs and chondrules, these features indicate that Ryugu is most similar to CI chondrites but has lower albedo, higher porosity and more fragile characteristics.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chengshun Liu ◽  
Xiyao Liu ◽  
Yilin Wu ◽  
Zhuotong Chen ◽  
Zhuanrong Wu ◽  
...  

Nanostructure CeO2 powders were synthesized using tea waste extract as gel precursor. The as-prepared samples were characterized by thermogravimetric analyzer (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Based on the TGA/DTG analysis, the intermediates of cerium chloride hydrates (CeCl3.4H2O and CeCl3.H2O) and cerium anhydrous (CeCl3) were produced, and the formation temperature of CeO2 was estimated to be 773 K. The cubic fluorite structure of CeO2 was detected to be the predominant species and was completely formed at the calcination temperature of 773K–1073 K with a crystal size between 8.8 and 11.4 nm based on the XRD measurement. Moreover, the main chemical state of ceria on the surface of the synthesized samples was confirmed to be tetravalent ceria by XPS. All samples show a strong Raman signal at a well-defined chemical shift of 463 cm−1 and a significant symmetry feature was observed, suggesting that the tetravalent ceria is the dominant species throughout the bulk sample. All the synthesized CeO2 calcined at different temperatures showed higher adsorption efficiency for Congo red (CR) compared with commercial CeO2. The adsorption efficiency maintained a steady state of more than 95% when the concentration of CR and adsorption temperature were varied in this study. The kinetic analysis showed that the second-order model was the appropriate model to interpret the adsorption behavior of synthesized CeO2. The calculated adsorption capacity derived from the second-order model is in good agreement with the experimental data. The isotherm analysis revealed that the Freundlich and D-R models fit well for the synthesized CeO2 and represent physisorption with a multilayer mechanism. The thermodynamic parameters, including the changes in Gibb’s free energy, enthalpy, and entropy, suggested that the adsorption of CR on the synthesized CeO2 sample was a spontaneous and endothermic process.


Author(s):  
MarÍa J. Balart ◽  
Xinjiang Hao ◽  
Claire L. Davis

AbstractFollowing observations of microcracking in two, out of three, Additive manufactured (AM) 316L steel samples, an investigation was undertaken to ascertain the root cause. Welding diagrams, taking into account composition and process parameters, could not generally account for the experimental observations of non-cracked versus cracked AM 316L samples. EBSD phase maps in all three AM samples exhibited a fully austenitic microstructure not only in the bulk sample but also near-surface. Analysis of microcracked regions in the AM samples showed the presence of local enrichment of Ni, Cu and P. Automated SEM/EDS analysis on feedstock powder samples prepared for cross-section examination revealed a fine, foreign particulate contaminant, expected to arise from NiCrCuP alloy cross-contamination during atomization, to be completely embedded in a 316L powder particle. This type of contamination would not have been revealed on examination of powder mounted onto a SEM stub, a common approach to assess powder quality. Based on this analysis, it is recommended to consider including automated SEM/EDS analysis on powder cross-sections in any standardization protocol for quality control of powders, to increase the chances of detection and identification of fine cross-contaminants. It is also recommended that atomization of NiCrCuP alloy should no longer precede atomization of 316L alloy.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7016
Author(s):  
Patryk Ciupak ◽  
Artur Barłowski ◽  
Piotr Sagan ◽  
Tadeusz Jasiński ◽  
Marian Kuzma

In this paper, the laser processing of the surface of bulk and layered samples (of thickness 75 nm) of Ni45Co5Mn35.5In14.5 alloy (NC5MI) was investigated using microsecond laser pulses. A Q-switched pulsed Nd3+:YAG laser, operating in the 1st harmonic (which had a wavelength of 1064 nm) with a pulse duration of 250 µs, was used. NC5MI is a metal resistant to thermal laser processing because its reflection coefficient is close to unity for long wavelengths. The aim of this paper was to learn the forms of laser processing (heating, microprocessing, ablation) for which the above-specified type of laser is useful. The samples were irradiated with various fluences in the interval of 5–32 J·cm−2. The effect of the laser interaction with the surface was explored by SEM microscopy. The threshold fluences for the bulk sample were determined as: the visible damage threshold (Fthd = 2 ± 0.2 J·cm−2), the melting threshold (Fthm = 10 ± 0.5 J·cm−2), and the deep melting threshold (Fthdm = 32 J·cm−2). Unexpectedly, these values wereincreased for the layer sample due to its silicon substrate. We have concluded that this type of laser radiation is advantageous for the annealing and melting of, or drilling holes in, the alloy, but disadvantageousto the ablation of the alloy.


2021 ◽  
Author(s):  
◽  
Jordan Katherine Miller

Sediment source fingerprinting using environmental magnetism has successfully differentiated between sediment sources in different regions of South Africa. The method was applied in the natural landscape of the Kruger National Park to trace sediment sources delivered to four reservoirs (Hartbeesfontein, Marheya, Nhlanganzwani, Silolweni) whose contributing catchments were underlain by a range of igneous, metamorphic, and sedimentary rocks. This research attempted to evaluate the impact of vegetation, lithology, and particle size controls on the ability of magnetic signatures to discriminate between lithology-defined potential sources. Potential source samples were collected from each lithology present in all catchments, except for the Lugmag catchment where the lithology was uniform, but the vegetation type varied significantly between woodland and grassland. One sediment core was taken in each of the four catchment reservoirs where there was more than one lithology present in order to unmix and apportion contributing sediment sources. Sampling time in the field was often restricted to short periods, dependent on anti-poaching activities and movement of free-roaming wildlife across the Park. This occasionally led to the sub-optimal collection of enough source samples to capture source signature variability. Mineral magnetic parameters were unable to discriminate between vegetation-defined sediment sources in the Lugmag catchment (homogenous underlying lithology) but were able to discriminate between lithology-defined sediment sources (to varying degrees) in the other four catchments. The contributions of each lithology-defined sediment source were estimated using a straightforward statistical protocol frequently used in published literature that included a Mann-Whitney U or Kruskal-Wallis H test, mass conservation test, discriminant function analysis, and an (un)mixing model. A contribution from each lithology source to reservoir sediment was estimated. Connectivity was a significant factor in understanding erosion in each of the catchments. Both longitudinal (e.g., drainage density) and lateral connectivity (e.g., floodplain - river) were important. Travel distance of eroded sediment to reservoirs was also an essential element in two of the four catchments. There are no defined floodplains, so channel bank soils are very similar to the catchment soils. Therefore, channel bank storage potential would be similar to the storage potential within the catchment. Vegetation played a crucial role in protecting soils, by reducing ii erosion potential as well as trapping and storing sediment, thereby interrupting lateral connectivity. Underlying geology and soils are determining factors of vegetation type and density. A published study estimated catchment area-specific sediment yields for different KNP catchments, including the Hartbeesfontein, Marheya, Nhlanganzwani and Silolweni catchments. The published data was used in combination with the (un)mixing model source contribution estimates of this thesis to determine specific sediment yields by lithology, i.e., for each catchment source. The polymodal particle size characteristics of the sample material led to an investigation into particle size controls on the ability of magnetic signatures to discriminate between potential sources. Due to time constraints, only the Hartbeesfontein and Marheya catchments were tested for grain size differences. For each catchment, one bulk sample was created for each lithology source. This bulk sample was divided into 10 subsamples. The samples were then fractionated into four particle size fraction groups: coarse (250 – 500 μm), medium (125 – 250 μm), fine (63 – 125 μm), and very fine (<63 μm). Reservoir samples were also bulked to create 10 down-core samples for each reservoir, and the samples were also fractionated into the four fraction groups. The same statistical protocol was applied to the fractionated samples and contribution estimates were obtained by lithology for each particle size fraction group. The goodness of fit and uncertainty of the (un)mixing model varied in each catchment, with the two measures of accuracy often showing an inverse relationship. The fractionated modelling estimated the same primary source in the two catchments as in the unfractionated modelling. However, additional information on the secondary and tertiary sources was obtained. Connectivity remained a significant factor in interpreting the results of the fractionated analysis. Specific sediment yields were estimated for each catchment source per particle size fraction group. These sediment yields provided a deeper understanding of sediment transport through a catchment and which particle size groups are most important in catchment erosion. An original contribution to research was made by estimating source contribution estimates for the four reservoirs, quantifying sediment yields for each catchment lithology and then for each catchment lithology by particle size. Mineral magnetic tracing of the catchments was applied for the first time in this region of South Africa.


Author(s):  
Joeselle Serrana ◽  
Kozo Watanabe

The development and evaluation of DNA metabarcoding protocols for haplotype-level resolution require attention, specifically for population genetic analysis, i.e., parallel estimation of genetic diversity and dispersal patterns among multiple species present in a bulk sample. Further exploration and assessment of the laboratory and bioinformatics strategies are warranted to unlock the potential of metabarcoding-inferred population genetic analysis. Here, we assessed the inference of freshwater macroinvertebrate haplotypes from DNA metabarcoding data using mock samples with known Sanger-sequenced haplotypes. We also examined the influence of different DNA template concentrations and PCR cycles on detecting true haplotypes and the reduction of spurious haplotypes obtained from DNA metabarcoding. We tested our haplotyping strategy on a mock sample containing 20 specimens from four species with known haplotypes based on the 658-bp Folmer region of the mitochondrial cytochrome c oxidase gene. The read processing and denoising step resulted in 14 zero-radius operational taxonomic units (ZOTUs) of 421-bp length, with 12 ZOTUs having 100% match with 12 of the Sanger haplotype sequences. Quality passing reads relatively increased with increasing PCR cycles, and the relative abundance of each ZOTUs was consistent for each cycle number. This suggests that increasing the cycle number from 24 to 64 did not affect the relative abundance of quality passing filter reads of each ZOTUs. Our study demonstrated the ability of DNA metabarcoding to infer intraspecific variability while highlighting the challenges that need to be addressed before its possible applications to population genetic studies.


Sign in / Sign up

Export Citation Format

Share Document