resonance spin
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 27)

H-INDEX

46
(FIVE YEARS 3)

Author(s):  
Jialei Huang ◽  
Yan Luo

Abstract Persulfate oxidation technology is widely used in wastewater treatment, but there are still many disadvantages, such as high energy consumption, side reaction and narrow pH applicability. Copper oxides can activate persulfate steadily with higher efficiency. In this paper, a novel preparation method of shape-controlled cuprous oxide (Cu2O) nanoparticles featured with high catalytic performance was explored. It was found that adding ionic liquid 1-butyl-3-methylimidazolium bromide ([BMIM]Br) during preparation of Cu2O can improve the degradation rate of diclofenac (DCF). Cu2O nanoparticles possess good stability in consecutive cycling tests, which was confirmed by X-ray photoelectron spectroscopy. The possible mechanism of Cu2O activating persulfate at different initial pH conditions was discussed based on electron paramagnetic resonance spin-trapping experiment. It was found that DCF was efficiently degraded in the Cu2O/peroxydisulfate (PDS) system within a broad pH range from 5 to 11. It proved via a quenching experiment that the activation process of PDS mainly occurs on the surface layer of Cu2O nanoparticles. As a result, shape-controlled Cu2O nanoparticles prepared by ionic liquid are expected to be used for in situ chemical oxidation, which is an effective oxidation processes to degrade DCF remaining in surface water and ground water.


2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Jiangfeng Guo ◽  
Michael M. B. Ross ◽  
Benedict Newling ◽  
Bruce J. Balcom

2021 ◽  
pp. 1-15
Author(s):  
S. Klimko ◽  
F. Legendre ◽  
S. Longeville

The Orphée reactor, located at the CEA Saclay near Paris, that was used to produce neutrons for scattering experiments over the past four decades has been stopped definitively in October 2019. The Laboratoire Léon Brillouin, the laboratory that operated the diffractometers and spectrometers around the Orphée reactor, is studying the possibility to build a compact Neutron Source to keep offering neutron beams to the French neutron scattering community. The efficient use of a pulsed source requires neutron instrumentation using Time-of-Flight (TOF) principles.The transfer of NSE spectrometer from continuous to pulse source requires the change of monochromatic neutron beam spin-echo technique to the TOF one. Here we report a successful attempt of adaptation of the Neutron Resonance Spin-Echo spectrometer MUSES (G1bis) to a pulsed source with a frequency of 20 Hz and a duty cycle of roughly 5 %.


2021 ◽  
Vol 11 (3) ◽  
pp. 894-902
Author(s):  
Cheng Ni ◽  
Daming Qin ◽  
Hong Cheng ◽  
Meng Zhou ◽  
Dandan Luo

This study is an attempt to find a way for functional imaging information to be applied clinically in radiation therapy. The basal nucleus is a collective term for a group of neural nucleus in the central nervous system that connects the pontine, brainstem, and cerebral cortex, including the caudate nucleus, the bean-shaped nucleus, the screen-shaped nucleus, and the amygdala. It is difficult to find the exact position of these neural nuclei on the computed tomography (CT) image or the T1 or T2 sequence of magnetic resonance. However, the development of neurosurgery has partially confirmed that these functional nuclei are involved in advanced cognitive functions such as memory, emotion, and learning. Neurosurgery has tried to avoid damaging these nucleus groups during surgery to improve the quality of life of patients, and there is currently no clear strategy for this in radiotherapy. Because CT and magnetic resonance spin echo (SE) sequences are difficult to find the anatomical location of the nucleus, it is difficult to have any strategy to protect these functions in radiotherapy planning. This article uses diffusion tensor imaging (DTI) images and fiber bundle tracking to obtain a more accurate anatomical position of the nerve nucleus on the image, and provides some available strategies for radiotherapy to protect patients’ brain function. The conclusion of this paper is that the combined application of DTI and functional magnetic resonance imaging (fMRI) can better observe the relationship among tumours, functional areas and white matter fibers, and guide the designation of radiotherapy plans.


Author(s):  
Johanna K. Jochum ◽  
Andreas Hecht ◽  
Olaf Soltwedl ◽  
Christian Fuchs ◽  
Jonathan Frank ◽  
...  

2020 ◽  
Vol 14 (5) ◽  
Author(s):  
Tatsuro Oda ◽  
Masahiro Hino ◽  
Hitoshi Endo ◽  
Hideki Seto ◽  
Yuji Kawabata

2020 ◽  
Vol 6 (4) ◽  
pp. 58
Author(s):  
Tyler M. Ozvat ◽  
Spencer H. Johnson ◽  
Anthony K. Rappé ◽  
Joseph M. Zadrozny

Studying the correlation between temperature-driven molecular structure and nuclear spin dynamics is essential to understanding fundamental design principles for thermometric nuclear magnetic resonance spin-based probes. Herein, we study the impact of progressively encapsulating ligands on temperature-dependent 59Co T1 (spin–lattice) and T2 (spin–spin) relaxation times in a set of Co(III) complexes: K3[Co(CN)6] (1); [Co(NH3)6]Cl3 (2); [Co(en)3]Cl3 (3), en = ethylenediamine); [Co(tn)3]Cl3 (4), tn = trimethylenediamine); [Co(tame)2]Cl3 (5), tame = triaminomethylethane); and [Co(dinosar)]Cl3 (6), dinosar = dinitrosarcophagine). Measurements indicate that 59Co T1 and T2 increase with temperature for 1–6 between 10 and 60 °C, with the greatest ΔT1/ΔT and ΔT2/ΔT temperature sensitivities found for 4 and 3, 5.3(3)%T1/°C and 6(1)%T2/°C, respectively. Temperature-dependent T2* (dephasing time) analyses were also made, revealing the highest ΔT2*/ΔT sensitivities in structures of greatest encapsulation, as high as 4.64%T2*/°C for 6. Calculations of the temperature-dependent quadrupolar coupling parameter, Δe2qQ/ΔT, enable insight into the origins of the relative ΔT1/ΔT values. These results suggest tunable quadrupolar coupling interactions as novel design principles for enhancing temperature sensitivity in nuclear spin-based probes.


Sign in / Sign up

Export Citation Format

Share Document