Acoustic Spectra of Glasses in the System Na2O-B2O3

1978 ◽  
pp. 577-585 ◽  
Author(s):  
J. T. Krause ◽  
C. R. Kurkjian
Keyword(s):  
1977 ◽  
Vol 61 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Jeffrey H. Miles ◽  
Grady H. Stevens ◽  
Gary G. Leininger
Keyword(s):  

Author(s):  
Yusuke Misumi ◽  
Shigeru Miyagawa ◽  
Daisuke Yoshioka ◽  
Satoshi Kainuma ◽  
Takuji Kawamura ◽  
...  

AbstractSignificant aortic regurgitation (AR) is a common complication after continuous-flow left ventricular assist device (LVAD) implantation. Using machine-learning algorithms, this study was designed to examine valuable predictors obtained from LVAD sound and to provide models for identifying AR. During a 2-year follow-up period of 13 patients with Jarvik2000 LVAD, sound signals were serially obtained from the chest wall above the LVAD using an electronic stethoscope for 1 min at 40,000 Hz, and echocardiography was simultaneously performed to confirm the presence of AR. Among the 245 echocardiographic and acoustic data collected, we found 26 episodes of significant AR, which we categorized as “present”; the other 219 episodes were characterized as “none”. Wavelet (time–frequency) analysis was applied to the LVAD sound and 19 feature vectors of instantaneous spectral components were extracted. Important variables for predicting AR were searched using an iterative forward selection method. Seventy-five percent of 245 episodes were randomly assigned as training data and the remaining as test data. Supervised machine learning for predicting concomitant AR involved an ensemble classifier and tenfold stratified cross-validation. Of the 19 features, the most useful variables for predicting concomitant AR were the amplitude of the first harmonic, LVAD rotational speed during intermittent low speed (ILS), and the variation in the amplitude during normal rotation and ILS. The predictive accuracy and area under the curve were 91% and 0.73, respectively. Machine learning, trained on the time–frequency acoustic spectra, provides a novel modality for detecting concomitant AR during follow-up after LVAD.


2021 ◽  
Vol 263 (2) ◽  
pp. 4079-4087
Author(s):  
Murat Inalpolat ◽  
Caleb Traylor

Noise generated by turbulent boundary layer over the trailing edge of a wind turbine blade under various flow conditions is predicted and analyzed for structural health monitoring purposes. Wind turbine blade monitoring presents a challenge to wind farm operators, and an in-blade structural health monitoring system would significantly reduce O&M costs. Previous studies into structural health monitoring of blades have demonstrated the feasibility of designing a passive detection system based on monitoring the flow-generated acoustic spectra. A beneficial next step is identifying the robustness of such a system to wind turbine blades under different flow conditions. To examine this, a range of free stream air velocities from 5 m/s to 20 m/s and a range of rotor speeds from 5 rpm to 20 rpm are used in a reduced-order model of the flow-generated sound in the trailing edge turbulent boundary layer. The equivalent lumped acoustics sources are predicted based on the turbulent flow simulations, and acoustic spectra are calculated using acoustic ray tracing. Each case is evaluated based on the changes detected when damage is present. These results can be used to identify wind farms that would most benefit from this monitoring system to increase efficiency in deployment of turbines.


2020 ◽  
pp. 17-30
Author(s):  
S. V. Mysik

The paper presents the calculation results of the kinetic and activation characteristics of fast and ultrafast structure rearrangement processes in liquid hydroxyethylated derivates of isononylphenol (ОНФn). Parameters were calculated using the relaxation theory of acoustic spectroscopy of liquids based on the analysis of the acoustic spectra of speed and sound absorption of the hydroxyethylated derivates of isononylphenol. The paper shows that two simple regions of acoustic dispersion can describe the acoustic spectra in the frequency range from 12 MHz to 2 GHz and the temperature range from 253 K to 323 K. The dispersion region data in the hydroxyethylated derivates of isononylphenol correspond to the interconnected reactions of OH ... O bonding and breaking in chain associates and spatially branched network structures. It is noted that the change in the spatial structure of liquid hydroxyethylated derivates of isononylphenol can be considered as a set of the large number of independent (for non-collective processes) and interconnected (for collective processes) local rearrangements of the liquid structure as a result of the thermal motion of molecules. The proposed molecular mechanism of acoustic relaxation and the kinetic model of fast and ultrafast structure rearrangement processes of the hydroxyethylated derivates of isononylphenol made it possible to explain the main experimental results and to calculate the kinetic and activation characteristics of the structure rearrangement processes of the hydroxyethylated derivates of isononylphenol. This model and the kinetic and activation parameters of the hydroxyethylated derivates of isononylphenol can find application in development of various technologies for using nonionic surfactants.


2018 ◽  
Vol 841 ◽  
pp. 50-80 ◽  
Author(s):  
Vincent Clair ◽  
Gwénaël Gabard

The scattering of acoustic waves by a moving vortex is studied in two dimensions to bring further insight into the physical mechanisms responsible for the spectral broadening caused by a region of turbulence. When propagating through turbulence, a monochromatic sound wave will be scattered over a range of frequencies, resulting in typical spectra with broadband sidelobes on either side of the tone. This spectral broadening, also called ‘haystacking’, is of importance for noise radiation from jet exhausts and for acoustic measurements in open-jet wind tunnels. A semianalytical model is formulated for a plane wave scattered by a vortex, including the influence of the convection of the vortex. This allows us to perform a detailed parametric study of the properties and evolution of the scattered field. A time-domain numerical model for the linearised Euler equations is also used to consider more general sound fields, such as that radiated by a point source in a uniform flow. The spectral broadening stems from the combination of the spatial scattering of sound due to the refraction of waves propagating through the vortex, and two Doppler shifts induced by the motion of the vortex relative to the source and of the observer relative to the vortex. The fact that the spectrum exhibits sidebands is directly explained by the directivity of the scattered field which is composed of several beams radiating from the vortex. The evolution of the acoustic spectra with the parameters considered in this paper is compared with the trends observed in previous experimental work on acoustic scattering by a jet shear layer.


2011 ◽  
Author(s):  
Zijian Guo ◽  
Song Hu ◽  
Christopher P. Favazza ◽  
Todd N. Erpelding ◽  
Ladislav Jankovic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document