Beta-Adrenergic Stimulation of Adenylate Cyclase and Alpha-Adrenergic Inhibition of Adenylate Cyclase: GTP-Binding Proteins as Macromolecular Messengers

Author(s):  
Lee E. Limbird
1995 ◽  
Vol 306 (1) ◽  
pp. 253-258 ◽  
Author(s):  
T Zor ◽  
I Halifa ◽  
S Kleinhaus ◽  
M Chorev ◽  
Z Selinger

A novel photoaffinity label, m-acetylanilido-GTP (m-AcAGTP), was synthesized and used to identify GTP-binding proteins (G-proteins). This GTP analogue is easily prepared and can be used for photoaffinity labelling of G-proteins without chromatographic purification. In the presence of the beta-adrenergic agonist isoprenaline, it activates turkey erythrocyte adenylate cyclase. This activation persists even when the beta-adrenergic receptor is subsequently blocked by antagonist, indicating that the GTP analogue is resistant to hydrolysis. The apparent Ka for activation of turkey erythrocyte adenylate cyclase by m-AcAGTP was found to be 0.21 microM, a value similar to that for guanosine 5′-[beta,gamma-imido]triphosphate. m-AcAGTP also effectively inhibited the light-dependent GTPase of Musca fly eye membranes. Photoaffinity labelling of fly eye membranes with [alpha-32P]m-AcAGTP, followed by immunoprecipitation of G-protein Gq, identified a labelled protein band with the mobility of a 41.5 kDa protein on SDS/PAGE. Labelling of this protein was enhanced 9-fold in blue over red illuminated membranes, containing metarhodopsin and rhodopsin respectively. Labelling of alpha-subunits of heterotrimeric G-proteins was also demonstrated in turkey erythrocyte membranes. The ease of preparation of m-AcAGTP and the chemical properties of the photoreactive acetophenone make this affinity label an important new tool in studies of cellular phenomena mediated by guanine nucleotide-binding proteins.


1990 ◽  
Vol 111 (4) ◽  
pp. 1427-1435 ◽  
Author(s):  
Y Audigier ◽  
L Journot ◽  
C Pantaloni ◽  
J Bockaert

GTP-binding proteins which participate in signal transduction share a common heterotrimeric structure of the alpha beta gamma-type. In the activated state, the alpha subunit dissociates from the beta gamma complex but remains anchored in the membrane. The alpha subunits of several GTP-binding proteins, such as Go and Gi, are myristoylated at the amino terminus (Buss, J. E., S. M. Mumby, P. J. Casey, A. G. Gilman, and B. M. Sefton. 1987. Proc. Natl. Acad. Sci. USA. 84:7493-7497). This hydrophobic modification is crucial for their membrane attachment. The absence of fatty acid on the alpha subunit of Gs (Gs alpha), the protein involved in adenylate cyclase activation, suggests a different mode of anchorage. To characterize the anchoring domain of Gs alpha, we used a reconstitution model in which posttranslational addition of in vitro-translated Gs alpha to cyc- membranes (obtained from a mutant of S49 cell line which does not express Gs alpha) restores the coupling between the beta-adrenergic receptor and adenylate cyclase. The consequence of deletions generated by proteolytic removal of amino acid sequences or introduced by genetic removal of coding sequences was determined by analyzing membrane association of the proteolyzed or mutated alpha chains. Proteolytic removal of a 9-kD amino-terminal domain or genetic deletion of 28 amino-terminal amino acids did not modify the anchorage of Gs alpha whereas proteolytic removal of a 1-kD carboxyterminal domain abolished membrane interaction. Thus, in contrast to the myristoylated alpha subunits which are tethered through their amino terminus, the carboxy-terminal residues of Gs alpha are required for association of this protein with the membrane.


2004 ◽  
Vol 287 (3) ◽  
pp. G715-G725 ◽  
Author(s):  
Vinzenz Stepan ◽  
Saravanan Ramamoorthy ◽  
Nonthalee Pausawasdi ◽  
Craig D. Logsdon ◽  
Frederick K. Askari ◽  
...  

G17 has growth promoting and antiapoptotic effects on the AR4–2J pancreatic acinar cell line. We previously reported that whereas MAPK regulates G17-stimulation of AR4–2J cell proliferation, Akt mediates the antiapoptotic action of G17. We examined the signal-transduction pathways mediating G17 stimulation of AR4–2J cell growth and survival. G17 activated the small GTP binding proteins Ras, Rac, Rho, and Cdc42. Transduction of the cells with adenoviral vectors expressing dominant negative Akt, Ras, Rho, and Cdc42 but not dominant negative Rac inhibited AR4–2J cell proliferation and survival. Both exoenzyme C3 from Clostridium botulinum (C3), a toxin known to inactivate Rho, and PD98059, a MAPK inhibitor, reversed G17 inhibition of AR4–2J cell apoptosis. G17 induction of Akt activation was reduced by >60% by both dominant negative Ras and Rho and by 30% by dominant negative Cdc42. In contrast, G17-stimulated MAPK activation was blocked by >80% by dominant negative Ras but not by dominant negative Rho and Cdc42. Similar results were observed in the presence of C3. Dominant negative Rac failed to affect G17 induction of both Akt and MAPK, whereas it inhibited sorbitol by almost 50% but not G17-stimulated activation of p38 kinase. Thus G17 promotes AR4–2J cell growth and survival through the activation of multiple GTP binding proteins, which, in turn, regulate different protein kinase cascades. Whereas Ras activates Akt and MAPK, Rho and Cdc42 appear to regulate Akt and possibly other as yet unidentified kinases mediating the growth-stimulatory actions of G17.


1987 ◽  
Author(s):  
Eduardo G Lapetina

It is now widely recognized that the activation of phospholipase C by specific agonists leads to the formation of two second messengers: (1) inositol trisphosphate, which releases Ca2+ from the endoplasmic reticulum to the cytosol and (2) 1,2- diacylglycerol, which stimulates protein kinase C. In the past few years, GTP-binding proteins have been associated with the regulation of phospholipase C. However, the identity of the GTP-binding protein involved and the type of association with phospholipase C is not yet known. It is now recognized that there are two types of phospholipase C enzymes: (a) a soluble enzyme that has been characterized in several tissues and does not preferentially hydrolyze polyphospholinositides and (b) membrane-bound enzymes that are coupled to the receptors, specifically hydrolyzing polyphosphoinositides and activated by membrane guanine nucleotide-binding proteins. Recent reports have tried to assess the involvement of GTP-binding proteins in the agonist-induced stimulation of phospholipase C, and various related aspects have been reported. These are concerned with: (a) detection of various GTP-binding proteins in platelets, (b) the effects of known inhibitors of GTP-binding proteins such as GDPgS or pertussis toxin on the agonist-induced stimulation of phospholipase C, (c) the direct effects of stimulators of GTP-binding proteins such as GTP, GTP-analogs and fluoride on phospholipase C activity, (d) the possible association of GTP-binding proteins to cytosolic phospholipase C that would then lead to degradation of the membrane-bound inositides and (e) cytosolic phospholipase C response to the activation of cell surface receptors. The emerging information has had contradictory conclusions. (1) Pretreatment of saponin-permeabilized platelets with pertussis toxin has been shown to enhance and to inhibit the thrombin-induced activation of phospholipase C. Therefore, it is not clear if a G protein that is affected by pertussis toxin in a manner similar to Gi or Go plays a central role in activation of phospholipase C. (2) Studies on the effect of GDPβ;S are also conflicting indicating that there may be GTP-independent and/or -dependent pathways for the activation of phosphoinositide hydrolysis. (3) A cytosolic phospholipase C is activated by GTP, and it has been advanced that this activity might trigger the hydrolysis of membrane-bound inositides. A cytosolic GTP-binding protein might be involved in this action, and it is speculated that an α-subunit might be released to the cytoplasm by a receptor-coupled mechanism to activate phospholipase C. However, no direct evidence exists to support this conclusion. Moreover, the exact contribution of phospholipase C from the membranes or the cytosol to inositide hydrolysis in response to cellular agonists and the relationship of those activites to membrane-bound or soluble GTP-binding proteins are unknown. Our results indicate that the stimulation of phospholipase C in platelets by GDPβS and thrombin are affected differently by GDPβS. GDPgSinhibits the formation of inositol phosphates produced by GTPγS but not that induced by thrombin. Thrombin, therefore, can directly stimulate phospholipase C without the involvement of a “stimulatory” GTP-binding protein, such as Gs, for the agonist stimulation of adenylate cyclase. However, an “inhibitory” GTP-binding protein might have some influence on thrombin-stimulated phospholipase C, since in the presence of GDPγS thrombin produces a more profound stimulation of phospholipase C.This “inhibitory” GTP-binding protein might be ADP-ribosylated by pertussis toxin because pertussis toxin can also enhance thrombin action on phospholipase C activity. Therefore, phospholipase C that responds to thrombin could be different from the one that responds to GTPγS. Cytosolic phospholipase C can be activated by GTP or GTP analogs, and the one that responds to thrombin should be coupled to the receptors present in the plasma membrane. The initial action of thrombin is to directly activate the plasma membrane-bound phospholipase C and the mechanism of this activation is probably related to the proteolytic action of thrombin or the activation of platelet proteases by thrombin. In agreement with this, trypsin can also directly activate platelet phospholipase C and, subsequently, GTPyS produces further activation of phospholipase C. If these two mechanisms are operative in platelets, the inhibition of cytosolic phospholipase C by GDPβS would allow a larger fraction of inositides for degradation of the thrombin-stimulated phospholipase C, as our results show.


Sign in / Sign up

Export Citation Format

Share Document