Shapes and Orientation of Atoms in Energy and Charge Transfer Collisions with Laser Excitation: Recent Developments

Author(s):  
Eleanor E. B. Campbell ◽  
Ingolf V. Hertel
1986 ◽  
Vol 39 (5) ◽  
pp. 829 ◽  
Author(s):  
P Hannaford ◽  
RM Lowe

A lifetimes technique that is readily applicable to neutral and singly ionised atoms of a wide range of elements, including the highly refractory elements, is reviewed. With this technique an atomic vapour of the element under study is generated by cathodic sputtering in a low pressure rare-gas discharge and fluorescence decay signals emitted by the vapour following pulsed laser excitation are recorded directly in a fast transient digitiser. Theoretical expressions are presented for the form of the time-resolved fluor~scence signal appropriate to the collisional environment of a rare-gas sputtering discharge. A summary is given of the atomic systems studied to date using this technique, and some new results for Sm and Ba are compared with recently reported results for these elements.


2018 ◽  
Vol 63 (4) ◽  
pp. 288 ◽  
Author(s):  
G. A. Dolgonos ◽  
E. S. Kryachko ◽  
T. Yu. Nikolaienko

For more than twenty years, the endohedral fullerene cavity is attracting a permanent attention of experimenters and theorists, computational chemists and physicists, who apply their efforts to simulate encapsulated atoms and molecules in the fullerene cavity on computers and analyze the arising phenomena of atomic bonding. In this work, recent developments concerning the endohedral fullerene He2@C60, in particular, its experimental observation and relevant computational works, are reviewed. On the one hand, the dihelium He2 embedded into the C60 cavity is observed experimentally. On the other hand, the computer simulation shows that each of the He atoms is characterized by an insignificant charge transfer to C60, so that the He dimer exists as a partially charged (He+b)2 entity. The key issue of the work concerns the existence of a bond between those two helium atoms. Since the bond is created between two particles, we assert that it suffices to define the bond on the basis of the molecular L¨owdin’s postulate and use it to study the He dimer in the C60 cavity in terms of the He–He potential energy well. It was analytically demonstrated that this well can contain at least one bound (ground) state. Therefore, according to L¨owdin’s postulate, which is naturally anticipated in quantum theory, the conclusion is drawn that the (He+b)2 entity is a diatomic molecule, in which two heliums are bound with each other. On the basis of those arguments, the concept of endohedral fullerene stability is proposed to be extended.


2015 ◽  
Vol 11 (A29A) ◽  
pp. 291-294
Author(s):  
Jelle S. Kaastra ◽  
Liyi Gu ◽  
Junjie Mao ◽  
Missagh Mehdipour ◽  
Ton Raassen ◽  
...  

AbstractThe Universe contains a broad range of plasmas with quite different properties depending on distinct physical processes. In this contribution we give an overview of recent developments in modeling such plasmas with a focus on X-ray emission and absorption. Despite the fact that such plasmas have been investigated already for decades, and that overall there is a good understanding of the basic processes, there are still areas, where improvements have to be made that are important for the analysis of astrophysical plasmas. We present recent work on the update of atomic parameters in the codes that describe the emission from collisional plasmas, where older approximations are being replaced now by more accurate data. Further we discuss the development of models for photo-ionised plasmas in the context of outflows around supermassive black holes and models for charge transfer that are needed for analyzing the data from the upcoming ASTRO-H satellite.


Sign in / Sign up

Export Citation Format

Share Document