atomic processes
Recently Published Documents


TOTAL DOCUMENTS

381
(FIVE YEARS 23)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
pp. 163-170
Author(s):  
Ch Vikar Ahmad ◽  
Ruchika Gupta ◽  
Kajol Chakraborty ◽  
G. R. Umapathy ◽  
Punita Verma
Keyword(s):  

Author(s):  
O.V. Glushkov ◽  
O.Yu. Khetselius ◽  
A.A. Kuznetsova ◽  
A.A. Svinarenko ◽  
V.B. Ternovsky

An effective approach to determining the parameters of the optimal schemes of the method of laser selective photoionization of atoms (elements and isotopes) with finite ionization due to collisions, ionization by a pulsed electric field, ionization through high (Rydberg) states and narrow autoionization resonances for the separation of heavy isotopes has been proposed. in gas separator devices. On the basis of the theory of optimal control and previously developed quantum models for calculating the characteristics of elementary atomic processes, optimization models of isotope separation are numerically implemented in the scheme of selective laser photoionization with ionization due to collisions in gas mixtures, ionization by a pulsed electric field, autoionization, etc. etc. The data obtained quantitatively confirm the promise of the method of laser photoionization with finite ionization due to collisions, ionization by a pulsed electric field, ionization through high-lying (Rydberg) states and narrow autoionization resonances and give a set of parameters for the desired optimal schemes, in particular, the laser pulse optimal shape for rubidium and uranium isotopes.


2021 ◽  
Author(s):  
Karla Banjac ◽  
Thanh Hai Phan ◽  
Fernando P. Cometto ◽  
Patrick Alexa ◽  
Yunchang Liang ◽  
...  

The electrochemical reduction of CO2 (CO2RR) into multicarbon compounds is a promising pathway towards renewable chemicals. Structure-product selectivity studies highlight that copper (100) facets favour C2+ product formation. However, the atomic processes leading to the formation of (100)-rich Cu cubes remains elusive. Herein, we use Cu and graphene-protected Cu surfaces to reveal the differences in structure and composition of common Cu-based electrocatalysts, from nano to micrometer scales. We show that stripping/electrodeposition cycles lead to thermodynamically controlled growth of Cu2O micro/nanocubes, while multi-layered Cu nanocuboids form universally during CO2RR upon polarization-driven re-organization of Cu0 atoms. A synergy of electrochemical characterization by scanning tunnelling microscopy (EC-STM), operando EC-Raman and quasi-operando X-Ray Photoemission spectroscopy (XPS) allows us to shed light on the role of oxygen on the dynamic interfacial processes of Cu, and to demonstrate that chloride is not needed for the stabilization of cubic Cu nanostructures.


Author(s):  
R P Dufresne ◽  
G Del Zanna ◽  
N R Badnell

Abstract To predict line emission in the solar atmosphere requires models which are fundamentally different depending on whether the emission is from the chromosphere or the corona. At some point between the two regions, there must be a change between the two modelling regimes. Recent extensions to the coronal modelling for carbon and oxygen lines in the solar transition region have shown improvements in the emission of singly- and doubly-charged ions, along with Li-like ions. However, discrepancies still remain, particularly for singly-charged ions and intercombination lines. The aim of this work is to explore additional atomic processes that could further alter the charge state distribution and the level populations within ions, in order to resolve some of the discrepancies. To this end, excitation and ionisation caused by both the radiation field and by atom-ion collisions have been included, along with recombination through charge transfer. The modelling is carried out using conditions which would be present in the quiet Sun, which allows an assessment of the part atomic processes play in changing coronal modelling, separately from dynamic and transient events taking place in the plasma. The effect the processes have on the fractional ion populations are presented, as well as the change in level populations brought about by the new excitation mechanisms. Contribution functions of selected lines from low charge states are also shown, to demonstrate the extent to which line emission in the lower atmosphere could be affected by the new modelling.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 324
Author(s):  
Vladimir A. Shurygin

The general coupling between particle transport and ionization-recombination processes in hot plasma is considered on the key concept of equilibrium charge state (CS) transport. A theoretical interpretation of particle and CS transport is gained in terms of a two-dimensional (2D) Markovian stochastic (random) processes, a discrete 2D Fokker-Plank-Kolmogorov equation (in charge and space variables) and generalized 2D coronal equilibrium between atomic processes and particle transport. The basic tool for analysis of CS equilibrium and transport is the equilibrium cell (EC) (two states on charge and two on space), which presents simultaneously a unit phase volume, the characteristic scales (in space and time) of local equilibrium, and a comprehensive solution for the simplest nonlinear relations between transport and atomic processes. The space-time relationships between the equilibrium constant, transport rates, density distributions, and impurity confinement time are found. The subsequent direct calculation of the total and partial density profiles and the transport coefficients of argon impurity showed a strong dependence of the 2D CS equilibrium and transport on the atomic structure of ions. A model for recovering the recombination rate profiles of carbon impurity was developed basing on the CS equilibrium conditions, the derived relationships, the data about density profiles, plasma parameters and ionization rates.


Author(s):  
Vladimir A. Shurygin

The general coupling between particle transport and ionization-recombination processes in hot plasma is considered on the key concept of equilibrium charge state (CS) transport. A theoretical interpretation of particle and CS transport is gained in terms of a two-dimensional (2D) Markovian stochastic (random) processes, a discrete 2D Fokker-Plank-Kolmogorov equation (in charge and space variables) and generalized 2D coronal equilibrium between atomic processes and particle transport. The basic tool for analysis of CS equilibrium and transport is the equilibrium cell (EC) (two states on charge and two on space), which presents (i) a unit phase volume, (ii) the characteristic scale of local equilibrium, (iii) a comprehensive solution for the simplest nonlinear relations between transport and atomic processes. The approach opens up new perspectives on transport studies: (i) the direct modelling of equilibrium and transport of impurity using the atomic data base, (ii) recovery of the complete recombination rate profile based on knowledge of density profiles and ionization rate profiles, (iii) the local transport analysis, based on the reduction of the equilibrium set to the single EC (in particular, central or edge), (iv) analysis of the reduced transport coefficients (diffusion and convection) on the density profile measurements.


Atoms ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 68
Author(s):  
Sultana Nahar

The online atomic database of NORAD-Atomic-Data, where NORAD stands for Nahar OSU Radiative, is part of the data sources of the two international collaborations of the Opacity Project (OP) and the Iron Project (IP). It contains large sets of parameters for the dominant atomic processes in astrophysical plasmas, such as, (i) photo-excitation, (ii) photoionization, (iii) electron–ion recombination, (iv) electron–impact excitations. The atomic parameters correspond to tables of energy levels, level-specific total photoionization cross-sections, partial photoionization cross-sections of all bound states for leaving the residual ion in the ground state, partial cross-sections of the ground state for leaving the ion in various excited states, total level-specific electron–ion recombination rate coefficients that include both the radiative and dielectronic recombination, total recombination rate coefficients summed from contributions of an infinite number of recombined states, total photo-recombination cross-sections and rates with respect to photoelectron energy, transition probabilities, lifetimes, collision strengths. The database was created after the first two atomic databases, TOPbase under the OP and TIPbase under the IP. Hence the contents of NORAD-Atomic-Data are either new or from repeated calculations using a much larger wave function expansion making the data more complete. The results have been obtained from the R-matrix method using the close-coupling approximation developed under the OP and IP, and from atomic structure calculations using the program SUPERSTRUCTURE. They have been compared with available published results which have been obtained theoretically and experimentally, and are expected to be of high accuracy in general. All computations were carried out using the computational facilities at the Ohio Supercomputer Center (OSC) starting in 1990. At present it contains atomic data for 154 atomic species, 98 of which are lighter atomic species with nuclear charge Z ≤ 28 and 56 are heavier ones with Z > 28. New data are added with publications.


Sign in / Sign up

Export Citation Format

Share Document